Infinitely going limit

Calculus Level 3

lim n ( 1 1 2 2 ) ( 1 1 3 2 ) ( 1 1 4 2 ) . . . ( 1 1 n 2 ) = x \lim_{n \to \infty} \left (1 - \dfrac{1}{2^2} \right) \left (1 - \dfrac{1}{3^2} \right) \left (1 - \dfrac{1}{4^2} \right) ... \left (1 - \dfrac{1}{n^2} \right) = x Find the value of 50 x 50x .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 14, 2018

x = lim n ( 1 1 2 2 ) ( 1 1 3 2 ) ( 1 1 4 2 ) ( 1 1 n 2 ) = lim n 2 2 1 2 2 × 3 2 1 3 2 × 4 2 1 4 2 × × n 2 1 n 2 = lim n ( 2 1 ) ( 2 + 1 ) 2 2 × ( 3 1 ) ( 3 + 1 ) 3 2 × ( 4 1 ) ( 4 + 1 ) 4 2 × × ( n 1 ) ( n + 1 ) n 2 = lim n 1 × 3 2 2 × 2 × 4 3 2 × 3 × 5 4 2 × × ( n 3 ) ( n 1 ) ( n 2 ) 2 × ( n 2 ) n ( n 1 ) 2 × ( n 1 ) ( n + 1 ) n 2 = lim n 2 × 3 2 × 4 2 × 5 2 × × ( n 1 ) 2 n ( n + 1 ) 2 2 × 3 2 × 4 2 × 5 2 × × ( n 1 ) 2 n 2 = lim n n + 1 2 n = lim n 1 + 1 n 2 = 1 2 \begin{aligned} x & = \lim_{n \to \infty} \left(1-\frac 1{2^2}\right) \left(1-\frac 1{3^2}\right) \left(1-\frac 1{4^2}\right) \cdots \left(1-\frac 1{n^2}\right) \\ & = \lim_{n \to \infty} \frac {2^2-1}{2^2} \times \frac {3^2-1}{3^2} \times \frac {4^2-1}{4^2} \times \cdots \times \frac {n^2-1}{n^2} \\ & = \lim_{n \to \infty} \frac {(2-1)(2+1)}{2^2} \times \frac {(3-1)(3+1)}{3^2} \times \frac {(4-1)(4+1)}{4^2} \times \cdots \times \frac {(n-1)(n+1)}{n^2} \\ & = \lim_{n \to \infty} \frac {1\times 3}{2^2} \times \frac {2\times 4}{3^2} \times \frac {3\times 5}{4^2} \times \cdots \times \frac {(n-3)(n-1)}{(n-2)^2} \times \frac {(n-2)n}{(n-1)^2} \times \frac {(n-1)(n+1)}{n^2} \\ & = \lim_{n \to \infty} \frac {2\times 3^2 \times 4^2 \times 5^2 \times \cdots \times (n-1)^2n(n+1)}{2^2\times 3^2 \times 4^2 \times 5^2 \times \cdots \times (n-1)^2n^2} \\ & = \lim_{n \to \infty} \frac {n+1}{2n} = \lim_{n \to \infty} \frac {1+\frac 1n}2 = \frac 12 \end{aligned}

Therefore, 50 x = 25 50x = \boxed{25} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...