Single digit α \alpha

Calculus Level 3

Let y = tan 1 ( 4 x 1 + 5 x 2 ) + tan 1 ( 2 + 3 x 3 2 x ) y = \tan^{-1} \left ( \dfrac{4x}{1 + 5x^2} \right ) + \tan^{-1} \left ( \dfrac{2 + 3x}{3 - 2x} \right ) where 0 < x < 2 3 0 < x < \dfrac23 .

If d y d x = α 1 + 25 x 2 \dfrac{dy}{dx} = \dfrac{\alpha}{1 + 25x^2} then find the value of α \alpha .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 14, 2018

y = tan 1 ( 4 x 1 + 5 x 2 ) + tan 1 ( 2 + 3 x 2 3 x ) = tan 1 ( 5 x x 1 + 5 x 2 ) + tan 1 ( 2 3 + x 2 3 x ) = tan 1 5 x tan 1 x + tan 1 2 3 + tan 1 x = tan 1 5 x + tan 1 2 3 \begin{aligned} y & = \tan^{-1} \left(\frac {4x}{1+5x^2}\right) + \tan^{-1} \left(\frac {2+3x}{2-3x}\right) \\ & = \tan^{-1} \left(\frac {5x-x}{1+5x^2}\right) + \tan^{-1} \left(\frac {\frac 23 +x}{\frac 23-x}\right) \\ & = \tan^{-1} 5x - \tan^{-1} x + \tan^{-1} \frac 23 + \tan^{-1} x \\ & = \tan^{-1} 5x + \tan^{-1} \frac 23 \end{aligned}

d y d x = 5 1 + 25 x 2 \implies \dfrac{dy}{dx} = \dfrac 5{1+25x^2}

Therefore, α = 5 \alpha = \boxed 5 .

Raymond Chan
Sep 21, 2018

tan y = 4 x 1 + 5 x 2 + 2 + 3 x 3 2 x 1 4 x 1 + 5 x 2 2 + 3 x 3 2 x = 4 x ( 3 2 x ) + ( 2 + 3 x ) ( 1 + 5 x 2 ) ( 1 + 5 x 2 ) ( 3 2 x ) 4 x ( 2 + 3 x ) = 15 x 3 + 2 x 2 + 15 x + 2 10 x 3 + 3 x 2 10 x + 3 = ( 15 x + 2 ) ( x 2 + 1 ) ( 3 10 x ) ( x 2 + 1 ) = 15 x + 2 3 10 x \begin{aligned} \tan y & = \frac{\frac{4x}{1+5x^2}+\frac{2+3x}{3-2x}}{1-\frac{4x}{1+5x^2}\frac{2+3x}{3-2x}} \\ & = \frac{4x(3-2x)+(2+3x)(1+5x^2)}{(1+5x^2)(3-2x)-4x(2+3x)} \\ & = \frac{15x^3+2x^2+15x+2}{-10x^3+3x^2-10x+3} \\ & = \frac{(15x+2)(x^2+1)}{(3-10x)(x^2+1)} \\ & = \frac{15x+2}{3-10x} \end{aligned}

sec 2 y d y d x = 15 ( 3 10 x ) + 10 ( 15 x + 2 ) ( 3 10 x ) 2 \sec ^2 y \frac{dy}{dx}=\frac{15(3-10x)+10(15x+2)}{(3-10x)^2}

( 1 + tan 2 y ) d y d x = 65 9 60 x + 100 x 2 (1+\tan ^2 y)\frac{dy}{dx}=\frac{65}{9-60x+100x^2}

( 1 + 225 x 2 + 60 x + 4 9 60 x + 100 x 2 ) d y d x = 65 9 60 x + 100 x 2 (1+\frac{225x^2+60x+4}{9-60x+100x^2})\frac{dy}{dx}=\frac{65}{9-60x+100x^2}

( 9 60 x + 100 x 2 ) + ( 225 x 2 + 60 x + 4 ) ) d y d x = 65 (9-60x+100x^2)+(225x^2+60x+4))\frac{dy}{dx}=65

( 325 x 2 + 13 ) d y d x = 65 (325x^2+13)\frac{dy}{dx}=65

( 25 x 2 + 1 ) d y d x = 5 (25x^2+1)\frac{dy}{dx}=5

d y d x = 5 1 + 25 x 2 \frac{dy}{dx}=\frac{5}{1+25x^2}

Therefore α = 5 \alpha = \boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...