Will you Differentiate and add

Calculus Level 3

If y = 1 x , y = \frac1x, then find the value of

d y 1 + y 4 + d x 1 + x 4 . \dfrac{dy}{\sqrt{1 + y^4}} + \dfrac{dx}{\sqrt{1 + x^4}}.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ravneet Singh
Sep 16, 2018

Chew-Seong Cheong
Sep 14, 2018

Given that y = 1 x y = \dfrac 1x d y d x = 1 x 2 \implies \dfrac {dy}{dx} = -\dfrac 1{x^2} x 2 d y = d x \implies x^2 \ dy = -dx .

Then we have:

d y 1 + y 4 + d x 1 + x 4 = d y 1 + 1 x 4 + d x 1 + x 4 = x 2 d y x 4 + 1 + d x 1 + x 4 = d x 1 + x 4 + d x 1 + x 4 = 0 \begin{aligned} \dfrac {dy}{\sqrt{1+y^4}} + \dfrac {dx}{\sqrt{1+x^4}} & = \dfrac {dy}{\sqrt{1+\frac 1{x^4}}} + \dfrac {dx}{\sqrt{1+x^4}} \\ & = \dfrac {x^2 dy}{\sqrt{x^4+1}} + \dfrac {dx}{\sqrt{1+x^4}} \\ & = \dfrac {- dx}{\sqrt{1+x^4}} + \dfrac {dx}{\sqrt{1+x^4}} \\ & = \boxed 0 \end{aligned}

Tom Engelsman
Sep 14, 2018

If y = 1 x y = \frac{1}{x} , then d y = 1 x 2 d x dy = -\frac{1}{x^2} dx . Substituting both these values into the above expression gives:

d y 1 + y 4 + d x 1 + x 4 = 1 x 2 d x 1 + 1 x 4 + d x 1 + x 4 ; \frac{dy}{\sqrt{1 + y^4}} + \frac{dx}{\sqrt{1+x^4}} = \frac{\frac{-1}{x^2}dx}{\sqrt{1 + \frac{1}{x^4}}} + \frac{dx}{\sqrt{1+x^4}};

or 1 x 2 x 2 d x 1 + x 4 + d x 1 + x 4 ; -\frac{1}{x^2} \cdot \frac {x^2 dx}{\sqrt{1+x^4}} + \frac{dx}{\sqrt{1+x^4}};

or d x 1 + x 4 d x 1 + x 4 ; \frac{dx}{\sqrt{1+x^4}} - \frac{dx}{\sqrt{1+x^4}};

or 0 . \boxed{0}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...