No introduction needed

Calculus Level 2

lim n ( 1 + 1 n ) n \large \lim_{n\to\infty} \left(1+\frac1n\right)^n

Evalute the limit above to 3 decimal places.


The answer is 2.718.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Raj Rajput
Jul 16, 2015

The value of the limit comes out to be e = 2.718... for reasons described here

Moderator note:

Yes, it's easier to relate the limit to the polynomial expansion of e e .

Yep. Exponential growth slows down.

1
2
>>> for n in xrange(0,40):
        print (1 + 1 / float(2 ** n)) ** (2 ** n)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
2.0
2.25
2.44140625
2.56578451395
2.63792849737
2.67699012938
2.69734495257
2.70773901969
2.71299162425
2.71563200017
2.71695572947
2.71761848234
2.71795008119
2.71811593627
2.71819887772
2.71824035193
2.7182610899
2.71827145911
2.71827664377
2.71827923611
2.71828053228
2.71828118037
2.71828150441
2.71828166644
2.71828174745
2.71828178795
2.71828180821
2.71828181833
2.7182818234
2.71828182593
2.71828182719
2.71828182783
2.71828182814
2.7182818283
2.71828182838
2.71828182842
2.71828182844
2.71828182845
2.71828182845
2.71828182846

Arulx Z - 5 years, 11 months ago
Krishna Shankar
Jul 1, 2015

The value of the limit comes out to be e = 2.718

Moderator note:

Why?

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...