An algebra problem

Algebra Level pending

Positive integers x x and y y are such that:

{ E ( x , y ) = x + 1 2 ( y + 2 ) E ( x , y ) + E ( y , x ) = 3 x + y \begin{cases} E(x,y) = \dfrac {x+1}{2(y+2)} \\ E(x,y)+E(y,x) = \dfrac 3{x+y} \end{cases}

Find x x .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Irina Stanciu
Dec 2, 2016

We've got: x + 1 2 ( y + 2 ) + y + 1 2 ( x + 2 ) = 3 x + y \frac{x+1}{2(y+2)}+ \frac{y+1}{2(x+2)}=\frac{3}{x+y} Multiplying by 2, we have x + 1 y + 2 + y + 1 x + 2 = 6 x + y o r x + 1 y + 2 + 1 + y + 1 x + 2 + 1 = 6 x + y + 2 \frac{x+1}{y+2} +\frac {y+1}{x+2}=\frac{6}{x+y} \! or \! \frac{x+1}{y+2} + 1 + \frac{y+1}{x+2} + 1=\frac{6}{x+y} + 2 => x + y + 3 y + 2 + x + y + 3 x + 2 = 2 x + y + 3 x + y \frac{x+y+3}{y+2} + \frac{x+y+3}{x+2}= 2 *\frac{x+y+3}{x+y} Dividing by (x+y+3), we get: 1 y + 2 + 1 x + 2 = 2 x + y = > x 2 + y 2 = 8 = > x = y = 2 \frac{1}{y+2} +\frac{1}{x+2}=\frac{2}{x+y} => x^{2} + y^{2}=8 => x=y=2

You may use LATEX,so that your answer looks interesting to read:

https://brilliant.org/discussions/thread/beginner-latex-guide/

Try the link.

Anandmay Patel - 4 years, 6 months ago

Thank you!

Irina Stanciu - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...