Calculus

Calculus Level 3

N = lim n ( 2 n ( 1 + 2 + 3 + + n ) 3 ( 1 2 + 2 2 + 3 2 + + n 2 ) ) n N=\lim_{n\rightarrow\infty}\left(\dfrac{2n(1+2+3+\cdots+n)}{3(1^2+2^2+3^2+\cdots+n^2)}\right)^{n}

What is the value of N N ?

1 e 2 \dfrac{1}{e^2} 1 e \dfrac{1}{e} 0 0 e 2 e^2 e e 1 1 1 e \dfrac{1}{\sqrt{e}} e \sqrt{e}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nivedit Jain
Mar 12, 2017

Used that if lim x n \lim_{x\rightarrow n} f ( x ) g ( x ) f(x)^{g(x)} = 1 1^{\infty} then req limit is e a e^{a} where a is ( f ( x ) 1 ) × g ( x ) (f(x)-1)\times g(x)

Nice, please follow me

Aira Thalca - 4 years, 2 months ago

Since k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum _{k=1}^nk^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6} and k = 1 n k = n ( n + 1 ) 2 \sum _{k=1}^nk=\frac{n\left(n+1\right)}{2} , lim n [ [ 2 n ( n ) ( n + 1 ) 2 ] [ 3 ( n ) ( n + 1 ) ( 2 n + 1 ) 6 ] ] n \displaystyle \large \lim_{n \to \infty} \left[\frac{\left[\frac{2n\left(n\right)\left(n+1\right)}{2}\right]}{\left[\frac{3\left(n\right)\left(n+1\right)\left(2n+1\right)}{6}\right]}\right]^n = lim n ( 2 n 2 n + 1 ) n =\displaystyle \large \lim_{n \to \infty} \left(\frac{2n}{2n+1}\right)^n

= lim n ( 1 1 2 n + 1 ) n =\displaystyle \large \lim_{n \to \infty} \left(1-\frac{1}{2n+1}\right)^n

= lim n ( 1 + 1 ( 2 n + 1 ) ) n =\displaystyle \large \lim_{n \to \infty} \left(1+\frac{1}{-\left(2n+1\right)}\right)^n

Now, let y = 2 n 1 y=-2n-1 , then:

= lim y ( 1 + 1 y ) ( y + 1 ) 2 =\displaystyle \large \lim_{y \to \infty} \left(1+\frac{1}{y}\right)^{-\frac{\left(y+1\right)}{2}}

= lim y ( 1 + 1 y ) y 2 ( 1 + 1 y ) 1 2 =\displaystyle \large \lim_{y \to \infty} \left(1+\frac{1}{y}\right)^{-\frac{y}{2}}\cdot \left(1+\frac{1}{y}\right)^{-\frac{1}{2}}

= lim y [ ( 1 + 1 y ) y ] 1 2 ( 1 + 0 ) 1 2 =\displaystyle \large \lim_{y \to \infty} \left[\left(1+\frac{1}{y}\right)^y\right]^{-\frac{1}{2}}\cdot \left(1+0\right)^{-\frac{1}{2}}

Since = lim x ( 1 + 1 x ) x = e =\displaystyle \large \lim_{x \to \infty} \left(1+\frac{1}{x}\right)^x=e ,

N = e 1 2 = 1 e \displaystyle N = \large e^{-\frac{1}{2}}=\frac{1}{\sqrt{e}}

Please follow me okau

Aira Thalca - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...