Calculus 3

Calculus Level 4

lim x x 3 ( x 2 + 1 + x 4 x 2 ) = ? \large \lim_{x \to \infty} \ x^3 \left(\sqrt{x^2 + \sqrt{1+x^4}} - x\sqrt{2} \right) = \, ?

For your final step, use the approximation 2 = 1.4 \sqrt 2 = 1.4 .


The answer is 0.178.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Jun 16, 2016

lim x x 3 ( x 2 + 1 + x 4 x 2 ) lim x x 4 ( 1 + 1 + 1 x 4 2 ) lim x x 4 ( 1 + 1 + 1 2 x 4 + 2 ) lim x 2 x 4 ( 1 + ( 1 4 x 4 + ) 1 ) lim x 2 x 4 ( 1 + 1 8 x 4 + 1 ) lim x 2 x 4 ( 1 8 x 4 + ) 1 4 2 = 0.178 \displaystyle\lim_{x \to \infty} x^3\left( \sqrt{x^2+\sqrt{1+x^4}} - x\sqrt{2} \right) \\ \displaystyle\lim_{x \to \infty} x^4\left( \sqrt{1+\sqrt{1+\dfrac1{x^4}}} - \sqrt{2} \right) \\ \displaystyle\lim_{x \to \infty} x^4\left( \sqrt{1+1+\dfrac1{2x^4}+\cdots} - \sqrt{2} \right) \\ \displaystyle\lim_{x \to \infty} \sqrt2x^4\left( \sqrt{1+\left(\dfrac1{4x^4}+\cdots\right)} - 1 \right) \\ \displaystyle\lim_{x \to \infty} \sqrt2x^4\left( \cancel{1}+\dfrac1{8x^4}+\cdots - \cancel{1} \right) \\ \displaystyle\lim_{x \to \infty} \sqrt2x^4\left( \dfrac1{8x^4}+\cdots \right) \implies \dfrac{1}{4\sqrt2} = \boxed{0.178} \


-: Alternate :- \text{-: Alternate :- }

lim x x 3 ( x 2 + 1 + x 4 x 2 ) x 2 + 1 + x 4 + x 2 x 2 + 1 + x 4 + x 2 lim x x 3 ( x 2 + 1 + x 4 2 x 2 ) ( x 2 + 1 + x 4 + x 2 ) ( 1 + x 4 + x 2 ) ( 1 + x 4 + x 2 ) lim x x 3 ( 1 + x 4 x 4 ) ( x 2 + 1 + x 4 + x 2 ) ( 1 + x 4 + x 2 ) lim x x 3 ( x 2 + 1 + x 4 + x 2 ) ( 1 + x 4 + x 2 ) lim x x 3 x 3 ( 1 + 1 + 1 x 4 + 2 ) ( 1 + 1 x 4 + 1 ) = 1 4 2 0.178 \displaystyle\lim_{x \to \infty} x^3\left( \sqrt{x^2+\sqrt{1+x^4}} - x\sqrt{2} \right) \cdot \dfrac{\sqrt{x^2+\sqrt{1+x^4}} + x\sqrt{2}}{\sqrt{x^2+\sqrt{1+x^4}} +x\sqrt{2}} \\ \displaystyle\lim_{x \to \infty} x^3\dfrac{\left( x^2+\sqrt{1+x^4} - 2x^2 \right)}{ \left( \sqrt{x^2+\sqrt{1+x^4}} + x\sqrt{2} \right)}\cdot \dfrac{\left(\sqrt{1+x^4} +x^2 \right)}{\left(\sqrt{1+x^4} + x^2 \right)} \\ \displaystyle\lim_{x \to \infty} x^3\dfrac{\left(1+\cancel{x^4} -\cancel{ x^4 }\right)}{ \left( \sqrt{x^2+\sqrt{1+x^4}} + x\sqrt{2} \right)\left(\sqrt{1+x^4} + x^2 \right)} \\ \displaystyle\lim_{x \to \infty} \dfrac{x^3}{ \left( \sqrt{x^2+\sqrt{1+x^4}} + x\sqrt{2} \right)\left(\sqrt{1+x^4} + x^2 \right)} \\ \displaystyle\lim_{x \to \infty} \dfrac{\cancel{x^3}}{ \cancel{x^3}\left( \sqrt{1+\sqrt{1+\dfrac1{x^4}}} + \sqrt{2} \right)\left(\sqrt{1+\dfrac1{x^4}} + 1 \right)} \\ = \dfrac{1}{4\sqrt2} \implies \boxed{0.178}

In context to your solution, which method do you think is better- Rationalising numerator or Series expansion?

Akshay Yadav - 4 years, 12 months ago

Log in to reply

The Expansion is much more better than Rationalizing. Rationalizing is a standard and most common way to solve these type of problems, that's why i explained it.

Sabhrant Sachan - 4 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...