Looks Tough

Calculus Level 2

If y = ( x + 1 + x 2 ) n , y = \left(x + \sqrt{1 + x^2}\right)^n, find

( 1 + x 2 ) d 2 y d x 2 + x d y d x . \left(1 + x^2\right)\frac{d^2y}{dx^2} + x \frac{dy}{dx}.

n 2 y n^2y n y 2 -ny^2 2 x 2 y 2x^2y y -y

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 11, 2018

y = ( x + 1 + x 2 ) n d y d x = n ( x + 1 + x 2 ) n 1 ( 1 + x 1 + x 2 ) = n ( x + 1 + x 2 ) n 1 + x 2 \begin{aligned} y & = \left(x + \sqrt{1+x^2}\right)^n \\ \frac {dy}{dx} & = n \left(x + \sqrt{1+x^2}\right)^{n-1} \left(1 + \frac x{\sqrt{1+x^2}}\right) \\ & = \frac {n\left(x + \sqrt{1+x^2}\right)^n}{\sqrt{1+x^2}} \end{aligned}

d y d x = n y 1 + x 2 Multiply both sides by 1 + x 2 ( 1 + x 2 ) d y d x = n y 1 + x 2 Differentiate both sides w.r.t. x ( 1 + x 2 ) d 2 y d x 2 + 2 x d y d x = n 1 + x 2 d y d x + n x y 1 + x 2 = n 1 + x 2 n y 1 + x 2 + x d y d x \begin{aligned} \implies \frac {dy}{dx} & = \frac {ny}{\sqrt{1+x^2}} & \small \color{#3D99F6} \text{Multiply both sides by }1+x^2 \\ \left(1+x^2\right) \frac {dy}{dx} & = ny\sqrt{1+x^2} & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }x \\ \left(1+x^2\right) \frac {d^2y}{dx^2} + 2x \frac {dy}{dx} & = n\sqrt{1+x^2} \frac {dy}{dx} + \frac {nxy}{\sqrt{1+x^2}} \\ & = n\sqrt{1+x^2} \frac {ny}{\sqrt{1+x^2}} + x\frac {dy}{dx} \end{aligned}

( 1 + x 2 ) d 2 y d x 2 + x d y d x = n 2 y \begin{aligned} \implies \left(1+x^2\right) \frac {d^2y}{dx^2} + x \frac {dy}{dx} & = \boxed{n^2y} \end{aligned}

I got answer through this method too. Earlier I tried to substitute x =tan(theta), it didn't work out.

Andromeda Stark - 4 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...