Calculus

Calculus Level 3

f ( x ) = cos ( x ) cos ( x + 2 ) cos 2 ( x + 1 ) \large f(x)= \cos (x) \cos (x+2)- \cos^2 (x+1)

What is the graph of f ( x ) f(x) ?

A straight line through ( π 2 , sin 2 ( 1 ) ) \left(\frac \pi 2, -\sin^2 (1) \right) and parallel to x x -axis A parabola with vertex ( 0 , sin 2 ( 1 ) ) (0,-\sin^2 (1)) A straight line passing through ( 0 , 0 ) (0,0)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 14, 2017

f ( x ) = cos x cos ( x + 2 ) cos 2 ( x + 1 ) = cos x ( cos ( x + 1 ) cos 1 sin ( x + 1 ) sin 1 ) cos 2 ( x + 1 ) = cos ( x + 1 ) ( cos x cos 1 cos ( x + 1 ) ) sin ( x + 1 ) sin 1 cos x = cos ( x + 1 ) ( cos x cos 1 cos x cos 1 + sin x sin 1 ) sin ( x + 1 ) sin 1 cos x = sin 1 ( cos ( x + 1 ) sin x sin ( x + 1 ) cos x ) = sin 2 1 \begin{aligned} f(x) & = \cos x \cos (x+2) - \cos^2 (x+1) \\ & = \cos x (\cos (x+1)\cos 1 - \sin(x+1)\sin 1) - \cos^2 (x+1) \\ & = \cos (x+1)(\cos x \cos 1 - \cos (x+1)) - \sin(x+1)\sin 1 \cos x \\ & = \cos (x+1)(\cos x \cos 1 - \cos x \cos 1 + \sin x \sin 1) - \sin(x+1)\sin 1 \cos x \\ & = \sin 1 (\cos (x+1)\sin x - \sin(x+1) \cos x) \\ & = - \sin^2 1 \end{aligned}

Therefore, f ( x ) f(x) is a straight line parallel to x x -axis.

Tom Engelsman
Sep 13, 2017

Expanding out the above function gives:

f ( x ) = c o s ( x ) [ c o s ( x ) c o s ( 2 ) s i n ( x ) s i n ( 2 ) ] [ c o s ( x ) c o s ( 1 ) s i n ( x ) s i n ( 1 ) ] 2 ; f(x) = cos(x)[cos(x)cos(2) - sin(x)sin(2)] - [cos(x)cos(1) - sin(x)sin(1)]^{2};

or [ c o s 2 ( x ) c o s ( 2 ) c o s ( x ) s i n ( x ) s i n ( 2 ) ] [ c o s 2 ( x ) c o s 2 ( 1 ) 2 c o s ( x ) s i n ( x ) c o s ( 1 ) s i n ( 1 ) + s i n 2 ( x ) s i n 2 ( 1 ) ] ; [cos^{2}(x)cos(2) - cos(x)sin(x)sin(2)] - [cos^{2}(x)cos^{2}(1) - 2cos(x)sin(x)cos(1)sin(1) + sin^{2}(x)sin^{2}(1)];

or [ c o s 2 ( x ) ( 2 c o s 2 ( 1 ) 1 ) 2 c o s ( x ) s i n ( x ) c o s ( 1 ) s i n ( 1 ) ] [ c o s 2 ( x ) c o s 2 ( 1 ) 2 c o s ( x ) s i n ( x ) c o s ( 1 ) s i n ( 1 ) + s i n 2 ( x ) s i n 2 ( 1 ) ] ; [cos^{2}(x)(2cos^{2}(1) - 1) - 2cos(x)sin(x)cos(1)sin(1)] - [cos^{2}(x)cos^{2}(1) - 2cos(x)sin(x)cos(1)sin(1) + sin^{2}(x)sin^{2}(1)];

or c o s 2 ( x ) c o s 2 ( 1 ) c o s 2 ( x ) s i n 2 ( x ) s i n 2 ( 1 ) ; cos^{2}(x)cos^{2}(1) - cos^{2}(x) - sin^{2}(x)sin^{2}(1);

or [ c o s 2 ( 1 ) 1 ] c o s 2 ( x ) [ 1 c o s 2 ( x ) ] s i n 2 ( 1 ) ; [cos^{2}(1) - 1]cos^{2}(x) - [1 - cos^{2}(x)]sin^{2}(1);

or [ c o s 2 ( 1 ) + s i n 2 ( 1 ) 1 ] c o s 2 ( x ) s i n 2 ( 1 ) ; [cos^{2}(1) + sin^{2}(1) - 1]cos^{2}(x) - sin^{2}(1);

or ( 1 1 ) c o s 2 ( x ) s i n 2 ( 1 ) ; (1 - 1)cos^{2}(x) - sin^{2}(1);

or f ( x ) = s i n 2 ( 1 ) . \boxed{f(x) = -sin^{2}(1)}.

Hence, choice B is the correct answer since f ( x ) f(x) is a constant function for all x R . x \in \mathbb{R}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...