Calculus

Calculus Level 3

2 x 2 x 1 1 = 2 x 1 + 1 \large 2^{|x|}-\left|2^{x-1}-1\right|=2^{x-1}+1

The set of solutions to the equation above is x a x \ge a and x = b x=b . Find a + b a+b .

Notation: |\cdot| denotes the absolute value function .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 14, 2017

Note that 2 x 2 x 1 1 = { 2 x 1 + 2 x 1 for x ( , 0 ) 2 x 1 + 2 x 1 for x [ 0 , 1 ) 2 x 2 x 1 + 1 for x [ 1 , ) 2^{|x|} - \left|2^{x-1}-1\right| = \begin{cases} 2^{-x} - 1 + 2^{x-1} & \text{for }x \in (-\infty, 0) \\ 2^x - 1 + 2^{x-1} & \text{for } x \in [0, 1) \\ 2^x - 2^{x-1} + 1 & \text{for } x \in [1, \infty) \end{cases}

For x ( , 0 ) x \in (-\infty, 0) :

2 x 1 + 2 x 1 = 2 x 1 + 1 2 x = 2 x = 1 = a \begin{aligned} 2^{-x} - 1 + 2^{x-1} & = 2^{x-1}+1 \\ 2^{-x} & = 2 \\ \implies x & = \color{#3D99F6} - 1 = a \end{aligned}

For x [ 0 , 1 ) x \in [0,1) :

2 x 1 + 2 x 1 = 2 x 1 + 1 2 x = 2 Since x < 1 , there is no solution. \begin{aligned} 2^{x} - 1 + 2^{x-1} & = 2^{x-1}+1 \\ 2^x & = 2 & \small \color{#D61F06} \text{Since }x < 1 \text{, there is no solution.} \end{aligned}

For x [ 1 , ) x \in [1, \infty) :

2 x 2 x 1 + 1 = 2 x 1 + 1 2 x = 2 x x 1 = b \begin{aligned} 2^x - 2^{x-1} + 1 & = 2^{x-1}+1 \\ 2^x & = 2^x \\ \implies x & \ge \color{#3D99F6} 1 = b \end{aligned}

a + b = 1 + 1 = 0 \implies a+b = -1+1 = \boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...