Calculus

Calculus Level 3

Find the number of x R x \in \mathbb R for which the equation below holds true.

x 2 x sin x cos x = 0 \large x^2-x \sin x-\cos x=0

6 2 0 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Sep 14, 2017

Consider f ( x ) = x 2 x sin x cos x f ( x ) = 2 x sin x x cos x + sin x = x ( 1 + 1 cos x ) = x ( 1 + 2 sin 2 x 2 ) > 0 x > 0 f ( x ) is increasing x > 0 & decreasing x < 0 1st eqn Also f ( 0 ) = 1 2nd eqn Hence from 1st & 2nd eqn f ( x ) have two solutions \text{Consider } f(x) = x^2-x\sin{x}-\cos{x} \\ \begin{aligned} f^{'}(x) & = 2x-\cancel{\sin{x}}-x\cos{x}+\cancel{\sin{x}} \\ & = x(1+1-\cos{x}) \\ & = x \left( 1+2\sin^2{\dfrac{x}{2}} \right) > 0 \hspace{4mm} \forall \hspace{4mm} x >0 \end{aligned} \\ f(x) \text{ is increasing } \forall \hspace{3mm} x > 0 \text{ \& decreasing } \forall \hspace{3mm} x<0 \hspace{ 5mm } \color{#3D99F6}{\small{\text{ 1st eqn }}} \\ \text{Also } f(0) = -1 \hspace{5mm } \color{#3D99F6}{\small{\text{ 2nd eqn }}} \\ \text{ Hence from 1st \& 2nd eqn } f(x) \text{ have two solutions}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...