Try To Factorize it

Calculus Level 3

Let α \alpha and β \beta be the roots of a x 2 + b x + c = 0 ax^2 + bx + c = 0 . Find lim x α 1 cos ( a x 2 + b x + c ) ( x α ) 2 \large \lim_{x \to \alpha} \frac{1 - \cos(ax^2 + bx + c)}{(x - \alpha)^2}

1 2 ( α β ) 2 \dfrac{1}{2} (\alpha - \beta)^2 a 2 2 ( α + β ) 2 \dfrac{a^2}{2} (\alpha + \beta)^2 a 2 2 ( α β ) 2 \dfrac{a^2}{2} (\alpha - \beta)^2 0 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 11, 2018

Since α \alpha and β \beta are roots of a x 2 + b x + c = 0 ax^2+bx+c = 0 , it implies that a ( x α ) ( x β ) = a x 2 + b x + c a(x-\alpha)(x-\beta) = ax^2 + bx+c . Then we have:

L = lim x α 1 cos ( a x 2 + b x + c ) ( x α ) 2 = lim x α 1 cos ( a ( x α ) ( x β ) ) ( x α ) 2 By Maclaurin series = lim x α 1 ( 1 a 2 ( x α ) 2 ( x β ) 2 2 ! + a 4 ( x α ) 4 ( x β ) 4 4 ! ) ( x α ) 2 = lim x α a 2 ( x α ) 2 ( x β ) 2 2 ! a 4 ( x α ) 4 ( x β ) 4 4 ! + a 6 ( x α ) 6 ( x β ) 6 6 ! ( x α ) 2 = lim x α ( a 2 ( x β ) 2 2 ! a 4 ( x α ) 2 ( x β ) 4 4 ! + a 6 ( x α ) 4 ( x β ) 6 6 ! ) = a 2 2 ( α β ) 2 \begin{aligned} L & = \lim_{x \to \alpha} \frac {1-\cos(ax^2+bx+c)}{(x-\alpha)^2} \\ & = \lim_{x \to \alpha} \frac {1-\color{#3D99F6}\cos(a(x-\alpha)(x-\beta))}{(x-\alpha)^2} & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \lim_{x \to \alpha} \frac {1-\color{#3D99F6}\left(1-\frac {a^2(x-\alpha)^2(x-\beta)^2}{2!} + \frac {a^4(x-\alpha)^4(x-\beta)^4}{4!} - \cdots \right)}{(x-\alpha)^2} \\ & = \lim_{x \to \alpha} \frac {\frac {a^2(x-\alpha)^2(x-\beta)^2}{2!} - \frac {a^4(x-\alpha)^4(x-\beta)^4}{4!} + \frac {a^6(x-\alpha)^6(x-\beta)^6}{6!} - \cdots}{(x-\alpha)^2} \\ & = \lim_{x \to \alpha} \left(\frac {a^2(x-\beta)^2}{2!} - \frac {a^4(x-\alpha)^2(x-\beta)^4}{4!} + \frac {a^6(x-\alpha)^4(x-\beta)^6}{6!} - \cdots\right) \\ & = \boxed{\dfrac {a^2}2 (\alpha-\beta)^2} \end{aligned}

I totally forgot about adding the a a in the equation.

Abha Vishwakarma - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...