Let α and β be the roots of a x 2 + b x + c = 0 . Find x → α lim ( x − α ) 2 1 − cos ( a x 2 + b x + c )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I totally forgot about adding the a in the equation.
Problem Loading...
Note Loading...
Set Loading...
Since α and β are roots of a x 2 + b x + c = 0 , it implies that a ( x − α ) ( x − β ) = a x 2 + b x + c . Then we have:
L = x → α lim ( x − α ) 2 1 − cos ( a x 2 + b x + c ) = x → α lim ( x − α ) 2 1 − cos ( a ( x − α ) ( x − β ) ) = x → α lim ( x − α ) 2 1 − ( 1 − 2 ! a 2 ( x − α ) 2 ( x − β ) 2 + 4 ! a 4 ( x − α ) 4 ( x − β ) 4 − ⋯ ) = x → α lim ( x − α ) 2 2 ! a 2 ( x − α ) 2 ( x − β ) 2 − 4 ! a 4 ( x − α ) 4 ( x − β ) 4 + 6 ! a 6 ( x − α ) 6 ( x − β ) 6 − ⋯ = x → α lim ( 2 ! a 2 ( x − β ) 2 − 4 ! a 4 ( x − α ) 2 ( x − β ) 4 + 6 ! a 6 ( x − α ) 4 ( x − β ) 6 − ⋯ ) = 2 a 2 ( α − β ) 2 By Maclaurin series