An algebra problem by Wes Waruwu

Algebra Level 4

If a a , b b , and c c are distinct real numbers such that ( b c ) x 2 + ( c a ) x + ( a b ) = 0 (b-c)x^2+(c-a)x+(a-b)=0 have two same roots, find b a c b \dfrac{ b-a } { c-b} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Patrik Kovacs
Jun 29, 2016

f = ( b c ) x 2 + ( c a ) x + ( a b ) f ( 1 ) = 0 a n d f h a s t w o s a m e s o l u t i o n = > f = ( x 1 ) 2 S o ( b c ) x 2 + ( c a ) x + ( a b ) = x 2 2 x + 1 = > b c = a b = 1 < = > b a = c b T h e r e f o r e t h e v a l u e o f t h e e x p r e s s i o n i s a b o v e i s 1. f=(b-c)x^{ 2 }+(c-a)x+(a-b)\\ f(1)=0\quad and\quad f\quad has\quad two\quad same\quad solution\quad =>\quad f={ (x-1) }^{ 2 }\\ So\quad (b-c)x^{ 2 }+(c-a)x+(a-b)={ x }^{ 2 }-2x+1\quad =>\quad b-c=a-b=1\quad <=>\quad b-a=c-b\\ Therefore\quad the\quad value\quad of\quad the\quad expression\quad is\quad above\quad is\quad 1.

. .
Mar 14, 2021

A quadratic equation has an equal root means it is a perfect square expression.

Like x 2 + 2 x + 1 = ( x + 1 ) 2 x ^ { 2 } + 2x + 1 = ( x + 1 ) ^ { 2 } .

If a x 2 + b x + c ax ^ { 2 } + bx + c is a perfect square expression, then c = ( 2 b ) 2 \displaystyle c = ( \frac { 2 } { b } ) ^ { 2 } .

Then above equation, ( b c ) x 2 + ( c a ) x + ( b + a ) ( b - c ) x ^ { 2 } + ( c - a ) x + ( -b + a ) is a perfect square expression.

So, b + a = ( b a ) = ( c a 2 ) 2 \displaystyle -b + a = - ( b - a ) = ( \frac { c - a } { 2 } ) ^ { 2 } .

So, if ( b c ) x 2 + ( c a ) x + ( a b ) = 0 ( b - c ) x ^ { 2 } + ( c - a ) x + ( a - b ) = 0 is x 2 + 2 x + 1 = 0 x ^ { 2 } + 2x + 1 = 0 , then we get b c = 1 b - c = 1 , c a = 2 c - a = 2 , and a b = 1 a - b = 1 .

We only get no solutions to the simultaneous equation.

But, b a c b = 1 \displaystyle \frac { b - a } { c - b } = 1 , because b a = c b b - a = c - b from b + a = ( b a ) -b + a = - ( b - a ) .

So, b a c b = 1 \displaystyle \frac { b - a } { c - b } = \boxed { 1 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...