Limit containing . \lfloor . \rfloor

Calculus Level 3

lim x 0 ( 100 sin x x + 100 tan x x ) = n \lim_{x \to 0} \left (\left \lfloor 100\dfrac{\sin x}{x} \right \rfloor + \left \lfloor 100\dfrac{\tan x}{x} \right \rfloor \right) = n Find the value of n n if . \lfloor . \rfloor denotes greatest integer function.


The answer is 199.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 13, 2018

L = lim x 0 ( 100 sin x x + 100 tan x x ) By Maclaurin series = lim x 0 ( 100 x x 3 3 ! + x 5 5 ! x + 100 x + x 3 3 + 2 x 5 15 + x ) = lim x 0 ( 100 ( 1 x 2 3 ! + x 4 5 ! ) < 1 + 100 ( 1 + x 2 3 + 2 x 4 15 + ) > 1 ) = 100 ( 0.999... ) + 100 ( 1.000... ) = 99 + 100 = 199 \begin{aligned} L & = \lim_{x \to 0} \left(\left \lfloor 100 \cdot \frac {\sin x}x\right \rfloor + \left \lfloor 100 \cdot \frac {\tan x}x\right \rfloor \right) & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \lim_{x \to 0} \left(\left \lfloor 100\cdot \frac {x-\frac {x^3}{3!}+\frac {x^5}{5!}-\cdots}x\right \rfloor + \left \lfloor 100\cdot \frac {x+\frac {x^3}3 +\frac {2x^5}{15} + \cdots}x \right \rfloor \right) \\ & = \lim_{x \to 0} \left(\left \lfloor 100 \underbrace{\left(1-\frac {x^2}{3!}+\frac {x^4}{5!}-\cdots\right)}_{\color{#D61F06}< 1} \right \rfloor + \left \lfloor 100\underbrace{\left( 1+\frac {x^2}3 +\frac {2x^4}{15} + \cdots\right)}_{\color{#D61F06}>1} \right \rfloor \right) \\ & = \left \lfloor 100 (0.999...) \right \rfloor + \left \lfloor 100 (1.000...) \right \rfloor \\ & = 99 + 100 = \boxed{199} \end{aligned}

Brian Moehring
Sep 14, 2018

We combine the following facts:

  • If 0 < x < π 2 , 0 < x < \frac{\pi}{2}, then sin x < x < tan x \sin x < x < \tan x and then by dividing by x > 0 x > 0 yields sin x x < 1 < tan x x . \frac{\sin x}{x} < 1 < \frac{\tan x}{x}. Further, since sin x x , tan x x \frac{\sin x}{x}, \frac{\tan x}{x} are both even functions of x , x, we can conclude 0 < x < π 2 sin x x < 1 < tan x x 0 < |x| < \frac{\pi}{2} \implies \frac{\sin x}{x} < 1 < \frac{\tan x}{x}
  • lim x 0 sin x x = lim x 0 tan x x = 1 \lim_{x\to 0} \frac{\sin x}{x} = \lim_{x\to 0} \frac{\tan x}{x} = 1

to conclude that lim x 0 ( 100 sin x x + 100 tan x x ) = lim S 1 100 S + lim T 1 + 100 T = 99 + 100 = 199 \lim_{x\to 0}\left(\left\lfloor100 \frac{\sin x}{x}\right\rfloor + \left\lfloor100 \frac{\tan x}{x}\right\rfloor\right) = \lim_{S \to 1^-}\left\lfloor100 S\right\rfloor + \lim_{T \to 1^+}\left\lfloor100 T\right\rfloor = 99 + 100 = \boxed{199}


Remark: In the typical development of the calculus of trigonometric functions, sin x < x < tan x \sin x < x < \tan x (when 0 < x < π 2 0 < x < \frac{\pi}{2} ) is the only inequality that needs to be shown purely using the geometric definition of the trig functions. From this inequality, we can directly show lim x 0 sin x x = 1 \lim_{x\to 0} \frac{\sin x}{x} = 1 , and from this limit we can find all the derivatives of all six common trigonometric functions. The reason why I point this out is that, starting from the geometric definition of the trig functions, this is the proper way to show that lim x 0 sin x x = 1 , \lim_{x\to 0} \frac{\sin x}{x} = 1, as opposed to the common faulty argument of using L'Hopital.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...