Calculus ALL IN ONE!

Calculus Level 3

Given a function f : ( , 3 ] R f:\left(-\infty,3\right]\rightarrow\mathbb{R} such that f ( x ) = 3 16 ( 0 1 f ( x ) d x ) x 2 9 10 ( 0 2 f ( x ) d x ) x + 2 ( 0 3 f ( x ) d x ) + 4 \displaystyle f\left( x\right)=\frac{3}{16}\left( \int_{0}^{1}\, f\left( x\right)\, dx \right)x^{2} -\frac{9}{10}\left( \int_{0}^{2}\, f\left( x\right)\, dx \right)x +2\left( \int_{0}^{3}\, f\left( x\right)\, dx \right) +4 Then find the value of lim t 0 2 t f ( 2 ) + 2 f 1 ( t ) [ f ( x ) ] 2 d x 1 cos t cosh 2 t cos 3 t \displaystyle \lim_{t\rightarrow 0}\, \frac{\displaystyle 2t-\int_{f\left(2\right)+2}^{f^{-1}\left(t\right)}\, \left[ {f}'\left(x\right)\right]^2 \, dx }{1-\cos t \cosh 2t \cos 3t}


The answer is 0.16666.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

C Anshul
Jul 13, 2018

H i n t s : Hints:

put these unknown integrals 0 1 f ( x ) d x = a \displaystyle\int_{0}^{1}\, f\left( x\right)\, dx =a and others two equal to b b and c c respectively.

Now integrate the given equation from 0 0 to 1 1 then 0 0 to 2 2 and then 0 0 to 3 3 .

U will get three equations in terms of a , b , c a,b,c On solving we get a = 16 3 , b = 20 3 , c = 6 a=-\frac{16}{3},b=-\frac{20}{3},c=-6 .

Now our f ( x ) = x 2 + 6 x 8 f(x)=-x^{2}+6x-8 .

Also f 1 ( x ) = 3 ( 1 x ) 1 2 f^{-1}(x)=3-(1-x)^{\frac{1}{2}}

Also on solving in numerator we will get

2 t + 4 3 ( 1 t ) 3 2 4 3 2t+\frac{4}{3}(1-t)^{\frac{3}{2}}-\frac{4}{3} . Then i just use L'hopital rule 2 times to get limit equal to 1 6 \frac{1}{6} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...