Bits of calculus, trigno and circles..what a mix

Geometry Level 4

Let x x , y y , z z , and t t be real numbers such that ( x , y ) (x,y) lie on a circle having radius 3, ( z , t ) (z,t) lie on a circle having radius 2 and x t y z = 6 xt - yz = 6 . Find the greatest value of P = x z P = xz .

Details: Both the circles mentioned have centers at the origin.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Boi (보이)
Aug 10, 2017

My solution's a bit... basic. It's just using elementary algebra without considering any trigonometry.

We can easily assume that x z 0 xz\ge0 when the maximum occurs, so we'll stick to that.

I don't like subtractions, so I'll let y = y 1 . y=-y_1.

Note that x 2 + y 1 2 = 9 x^2+{y_1}^2=9 and z 2 + t 2 = 4 z^2+t^2=4 to figure out that ( x 2 + y 1 2 ) ( z 2 + t 2 ) = ( x t + y 1 z ) 2 . (x^2+{y_1}^2)(z^2+t^2)=(xt+{y_1}z)^2.

Solving this yields x z = t y 1 . xz=ty_1. Then we see that t y 1 0 ty_1\ge0 and so,

x z t y 1 x t + y 1 z 2 = 3. \sqrt{xz\cdot ty_1}\le\dfrac{xt+y_1z}{2}=3.

Therefore, x z 3 , xz\le3, and the maximum of P = x z P=xz is 3 . \boxed{3}.

Similar solution to @RAHUL SINGH 's solution.

We are given:

{ x 2 + y 2 = 9 We can let x = 3 cos θ , y = 3 sin θ z 2 + t 2 = 4 similarly z = 2 cos ϕ , t = 2 sin ϕ \begin{cases} x^2 + y^2 = 9 & \small \color{#3D99F6} \text{We can let }x = 3\cos \theta, \ y = 3\sin \theta \\ z^2 + t^2 = 4 & \small \color{#3D99F6} \text{similarly }z = 2\cos \phi, \ t = 2\sin \phi \end{cases}

Then, we have:

x t y z = 6 3 cos θ 2 sin ϕ 3 sin θ 2 cos ϕ = 6 sin ( ϕ θ ) = 1 ϕ θ = π 2 ϕ = π 2 + θ \begin{aligned} xt-yz & = 6 \\ 3\cos \theta \cdot 2\sin \phi - 3\sin \theta \cdot 2\cos \phi & = 6 \\ \sin (\phi - \theta) & = 1 \\ \phi - \theta & = \frac \pi 2 \\ \implies \phi & = \frac \pi 2 + \theta \end{aligned}

And

P = x z = 3 cos θ 2 cos ϕ Note that ϕ = π 2 + θ = 6 cos θ cos ( π 2 + θ ) Note: cos x = sin ( π 2 x ) = 6 cos θ sin ( θ ) Note: sin ( x ) = sin x = 6 cos θ sin θ Note: sin 2 x = 2 sin x cos x = 3 sin 2 θ \begin{aligned} P & = xz \\ & = 3\cos \theta \cdot 2 \cos \color{#3D99F6} \phi & \small \color{#3D99F6} \text{Note that }\phi = \frac \pi 2 + \theta \\ & = 6 \cos \theta \color{#3D99F6} \cos \left(\frac \pi 2 + \theta\right) & \small \color{#3D99F6} \text{Note: }\cos x = \sin \left(\frac \pi 2-x\right) \\ & = 6 \cos \theta \color{#3D99F6} \sin \left(- \theta\right) & \small \color{#3D99F6} \text{Note: }\sin (-x) = - \sin x \\ & = {\color{#3D99F6}-} 6 \cos \theta \color{#3D99F6} \sin \theta & \small \color{#3D99F6} \text{Note: } \sin 2x = 2\sin x \cos x \\ & = - 3 \sin 2 \theta \end{aligned}

Note that max ( P ) = 3 \max (P) = \boxed{3} , when sin 2 θ = 1 \sin 2 \theta = -1 .

Rahul Singh
Aug 7, 2017

since x,y,z,t lie in circles..we can assume parametric coordinates for these. let x = 3cosA, y = 3sinA, z = 2cosB, t = 2sinB... Now according to given condition xt-yz = 6....we get 6(sin(B-A)) = 6.. which leads to B = A + P i 2 \frac{Pi}{2} .. using this relation in the above parametric values of x,y,z,t we get xz = -3Sin(2A)...which has max. value = 3.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...