Calculus beauty!

Calculus Level 3

1 2 x 2 + 2 3 x 3 + 3 4 x 4 + \large \dfrac{1}{2} x^2 + \dfrac{2}{3} x^3 + \dfrac{3}{4} x^4 + \cdots

If 0 < x < 1 0<x<1 , then find the closed form of the infinite series above.

x 1 x + ln ( 1 x ) \frac{x}{1-x} +\ln(1-x) ln 1 + x 1 x \ln\frac{1+x}{1-x} x 1 x + ln ( 1 + x ) \frac{x}{1-x} + \ln(1+x) 1 1 x + ln ( 1 x ) \frac{1}{1-x} + \ln(1-x)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akash Patalwanshi
Apr 30, 2016

We know, x 1 x = x + x 2 + x 3 + . . . \frac{x}{1-x} = x + x^2 + x^3 +... for 0 < x < 1 0 <x<1

and

log ( 1 x ) = ( x + x 2 2 + x 3 3 + . . . ) \log(1-x) = -(x + \frac{x^2}{2} + \frac{x^3}{3} +...)
for 0 < x < 1 0<x<1

So, x 1 x + log ( 1 x ) = x x + x 2 x 2 2 + x 3 x 3 3 + . . . \frac{x}{1-x} + \log(1-x) = x - x + x^2 - \frac{x^2}{2} + x^3 - \frac{x^3}{3} +... for 0 < x < 1 0<x<1

x 1 x + log ( 1 x ) = 1 2 x 2 + 2 3 x 3 + 3 4 x 4 + . . . . →\boxed{\frac{x}{1-x} + \log(1-x)} = \frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{3}{4}x^4 +.... for 0 < x < 1 0<x<1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...