Calculus in functional equation

Calculus Level 4

Let f : R R f: \mathbb R \to \mathbb R satisfy f ( x + y ) f ( x y ) y y 2 | f(x+y) - f(x-y) - y | \leq y^2 for all ( x , y ) R 2 (x,y) \in \mathbb R^2 .

Determine which of the following can be a possible function of f ( x ) f(x) .


Note: In the options, c c denote an arbitrary constant.

cos(x)+c sin(x)+c (x/2)+c (x^2)+c

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rajdeep Brahma
Mar 25, 2017

Set x-y=z & 2y=h. Let t belong to R & t>0. If(z+h)-f(z)- h 2 \frac{h}{2} I<= h 2 4 \frac{h^2}{4} or I f ( z + h ) f ( z ) h \frac{f(z+h)-f(z)}{h} -1/2I<=h/4 Take IhI<=4t So I f ( z + h ) f ( z ) h \frac{f(z+h)-f(z)}{h} -1/2I<=t or
Id(f(z))/dz-1/2I<=t So,d(f(z))/dz=1/2 Integrating both sides we get f(z)=x/2+c

Eta ki MCQ chilo?. Then kora easy, nahole tough!

Md Zuhair - 4 years, 1 month ago

No,this was a subjective question of ISI ENTRANCE 2015.

rajdeep brahma - 4 years, 1 month ago

Log in to reply

WTF! Its tough bro. Jodi mcq hoto then easy

Md Zuhair - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...