A calculus problem by Rishabh Deep Singh

Calculus Level 4

lim m d x 1 + x 2 + x 4 + + x 2 m d x \large \lim_{m\to\infty} \int_{-\infty}^{\infty} \dfrac{dx}{1+x^2+x^4 + \cdots + x^{2m}} \, dx

If the limit above can be expressed as A B \dfrac AB , where A A and B B are coprime positive integers, find A + B A+B .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 28, 2016

I = lim m d x 1 + x 2 + x 4 + . . . + x 2 m Since the integral is even and absolutely convergent (see Note) = lim m 2 0 d x 1 + x 2 + x 4 + . . . + x 2 m Note that when x 1 , the integrand = 0 = lim m 2 0 1 d x 1 + x 2 + x 4 + . . . + x 2 m = 2 0 1 ( 1 x 2 ) d x = 2 [ x x 3 3 ] 0 1 = 4 3 \begin{aligned} I & = \lim_{m \to \infty} \int_{-\infty}^\infty \frac {dx}{1+x^2+x^4+...+x^{2m}} & \small {\color{#3D99F6}\text{Since the integral is even and absolutely convergent (see Note)}} \\ & = \lim_{m \to \infty} {\color{#3D99F6}2} \int_{\color{#3D99F6}0}^\infty \frac {dx}{1+x^2+x^4+...+x^{2m}} & \small {\color{#3D99F6}\text{Note that when }|x| \ge 1 \text{, the integrand}=0} \\ & = \lim_{m \to \infty} 2 \int_0^{\color{#3D99F6}1} \frac {dx}{1+x^2+x^4+...+x^{2m}} \\ & = 2 \int_0^1 (1-x^2) \ dx \\ & = 2 \left[x - \frac {x^3}3 \right]_0^1 \\ & = \frac 43 \end{aligned}

A + B = 4 + 3 = 7 \implies A+B = 4+3 = \boxed{7}


Note: Since 1 1 + x 2 + x 4 + . . . + x 2 m d x < 1 1 + x 2 d x < \displaystyle \int_{-\infty}^\infty \left|\frac 1{1+x^2+x^4+...+x^{2m}} \right| \ dx < \int_{-\infty}^\infty \frac 1{1+x^2} \ dx < \infty the integral is absolutely convergent and we can interchange integration with summation.

The second line needs to be better justified. You are interchanging the summation and integral sign , which might not always be true.

Calvin Lin Staff - 4 years, 7 months ago

Log in to reply

Thanks. Hope I got it right.

Chew-Seong Cheong - 4 years, 7 months ago

Log in to reply

Great! That justifies the step.

Calvin Lin Staff - 4 years, 7 months ago

same solution :)

avi solanki - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...