A calculus problem by Nikola Alfredi

Calculus Level 1

lim n 0 a n 1 n = ? \lim_{n \to 0} \frac {a^n - 1}n = \ ?

n ln a \displaystyle n \ln a ln a \displaystyle \ln a 1 n ln a \displaystyle \frac {1}{n} \ln a ln 1 a \displaystyle \ln \frac {1}{a}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 14, 2020

L = lim n 0 a n 1 n A 0/0 case, L’H o ˆ pital’s rule applies. = lim n 0 a n ln a 1 Differentiate up and down w.r.t. n = ln a \begin{aligned} L & = \lim_{n \to 0} \frac {a^n-1}n & \small \blue{\text{A 0/0 case, L'Hôpital's rule applies.}} \\ & = \lim_{n \to 0} \frac {a^n\ln a}1 & \small \blue{\text{Differentiate up and down w.r.t. }n} \\ & = \boxed{\ln a} \end{aligned}

Reference: L'Hôpital's rule

@Chew-Seong Cheong Link to a question : Check this

Nikola Alfredi - 1 year, 3 months ago
Nikola Alfredi
Feb 14, 2020

SOLUTION

So let's look at some other problem and we will try to relate it....

d d x e x = lim Δ x 0 [ e x e Δ x 1 Δ x ] \displaystyle \frac{\mathrm{d}}{\mathrm{d}x} e^x = \lim_{\Delta x \rightarrow 0} \ \ [e^x \ \ \frac {e^{\Delta x } - 1}{\Delta x }]

lim Δ x 0 [ e x e Δ x 1 Δ x ] = e x lim Δ x 0 e Δ x 1 Δ x \displaystyle \lim_{\Delta x \rightarrow 0} \ \ [e^x \ \ \frac {e^{\Delta x } - 1}{\Delta x }] = e^x \ \ \lim_{\Delta x \rightarrow 0} \frac {e^{\Delta x } - 1}{\Delta x }

Where, lim Δ x 0 e Δ x 1 Δ x 1.00000..... \ \ \displaystyle \lim_{\Delta x \rightarrow 0} \frac {e^{\Delta x } - 1}{\Delta x } \approx 1.00000.....

Thus d d x e x = e x \ \ \displaystyle \frac{\mathrm{d}}{\mathrm{d}x} e^x = e^x

Now note this a = e ln a \ \ \displaystyle a = e^{\ln a} so a n = e n ln a \ \ \displaystyle a^n = e^{n \ln a}

Hence d d n a n = d d n e n ln a \ \ \displaystyle \frac{\mathrm{d}}{\mathrm{d}n} a^n = \frac{\mathrm{d}}{\mathrm{d}n} e^{n \ln a}

a n lim Δ n 0 a Δ n 1 Δ n = e n ln a × ln a \ \ \displaystyle a^n \ \ \lim_{\Delta n \rightarrow 0} \frac {a^{\Delta n } - 1}{\Delta n } = e^{n \ln a} \times \ln a \ \ By Chain-Rule

Ultimately, lim Δ n 0 a Δ n 1 Δ n = ln a \ \ \displaystyle \lim_{\Delta n \rightarrow 0} \frac {a^{\Delta n } - 1}{\Delta n } = \ln a

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...