Calculus is Awesome!

Calculus Level 5

M = 0 π / 2 ln ( sin x ) sin x 1 d x \large \displaystyle M = \int_{0} ^{\pi /2} \dfrac{ \ln ( \sin x)}{\sin x-1} \, dx . Find 10 M \lfloor 10M \rfloor .


The answer is 22.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Feb 5, 2016

A couple of changes of variable gives M = 0 1 2 π ln ( sin x ) sin x 1 d x = 0 1 2 π ln ( cos y ) cos y 1 d y = 1 2 0 1 2 π ln ( cos y ) c o s e c 2 1 2 y d y = 1 ln ( u 2 1 u 2 + 1 ) d u = 1 ln ( u 2 + 1 u 2 1 ) d u \begin{array}{rcl} \displaystyle M \; = \; \int_0^{\frac12\pi} \frac{\ln(\sin x)}{\sin x - 1}\,dx & = & \displaystyle \int_0^{\frac12\pi} \frac{\ln(\cos y)}{\cos y - 1}\,dy \; = \; -\tfrac12\int_0^{\frac12\pi}\ln(\cos y) \mathrm{cosec}^2\tfrac12y\,dy \\ & = & \displaystyle-\int_1^\infty \ln\left(\frac{u^2-1}{u^2+1}\right)\,du \; = \; \int_1^\infty \ln\left(\frac{u^2+1}{u^2-1}\right)\,du \end{array} using first y = 1 2 π x y= \tfrac12\pi - x and then u = cot 1 2 y u = \cot\tfrac12y . Since this integral is improper, being both infinite and with a singularity at u = 1 u=1 , we shall first integrate from a > 1 a > 1 to X X , and take limits. Integrating by parts gives a X ln ( u 2 + 1 u 2 1 ) d u = [ u ln ( u 2 + 1 u 2 1 ) ] a X + 4 a X u 2 u 4 1 d u = [ u ln ( u 2 + 1 u 2 1 ) ] a X + a X ( 2 u 2 + 1 + 1 u 1 1 u + 1 ) d u = [ u ln ( u 2 + 1 u 2 1 ) + 2 tan 1 u + ln ( u 1 u + 1 ) ] a X \begin{array}{rcl} \displaystyle \int_a^X \ln\left(\frac{u^2+1}{u^2-1}\right)\,du & = & \left[u \ln\left(\frac{u^2+1}{u^2-1}\right)\right]_a^X + 4\int_a^X \frac{u^2}{u^4-1}\,du \\ & = & \left[u\ln\left(\frac{u^2+1}{u^2-1}\right)\right]_a^X + \int_a^X \left(\frac{2}{u^2+1} + \frac{1}{u-1} - \frac{1}{u+1}\right)\,du \\ & = & \left[ u\ln \left(\frac{u^2+1}{u^2-1}\right) + 2\tan^{-1}u + \ln\left(\frac{u-1}{u+1}\right)\right]_a^X \end{array} Now X ln ( X 2 + 1 X 2 1 ) + 2 tan 1 X + ln ( X 1 X + 1 ) = X ln ( 1 + X 2 1 X 2 ) + 2 tan 1 X + ln ( 1 X 1 1 + X 1 ) X\ln\left(\frac{X^2+1}{X^2-1}\right) + 2\tan^{-1}X + \ln\left(\frac{X-1}{X+1}\right) \; = \; X\ln\left(\frac{1 + X^{-2}}{1 - X^{-2}}\right) + 2\tan^{-1}X + \ln\left(\frac{1 - X^{-1}}{1 + X^{-1}}\right) which tends to 0 + π + 0 = π 0 + \pi + 0 = \pi as X X \to \infty , and hence a ln ( u 2 + 1 u 2 1 ) d u = π a ln ( a 2 + 1 a 2 1 ) 2 tan 1 a ln ( a 1 a + 1 ) = π 2 tan 1 a a ln ( a 2 + 1 ) + ( a + 1 ) ln ( a + 1 ) + ( a 1 ) ln ( a 1 ) \begin{array}{rcl} \displaystyle \int_a^\infty \ln\left(\frac{u^2+1}{u^2-1}\right)\,du & = & \displaystyle\pi - a\ln\left(\frac{a^2+1}{a^2-1}\right) - 2\tan^{-1}a - \ln\left(\frac{a-1}{a+1}\right) \\ & = & \displaystyle \pi - 2\tan^{-1}a - a\ln(a^2+1) + (a+1)\ln(a+1) + (a-1)\ln(a-1) \end{array} for any a > 1 a > 1 ; this tends to M = π 2 tan 1 1 ln 2 + 2 ln 2 + 0 = 1 2 π + ln 2 M \; = \; \pi - 2\tan^{-1}1 - \ln2 + 2\ln 2 + 0 \; = \; \tfrac12\pi + \ln 2 as a 1 a \to 1 . The answer is 10 M = 5 π + 10 ln 2 = 22 \lfloor 10M \rfloor \,=\, \lfloor 5\pi + 10\ln2\rfloor \,=\, \boxed{22} .

Cool problem ! @Harsh Shrivastava ! Keep posting such problems !

A Former Brilliant Member - 5 years, 4 months ago
Hassan Abdulla
Jul 16, 2019

Note1:

1 sin ( x ) 1 sin ( x ) + 1 sin ( x ) + 1 d x = sin ( x ) cos 2 ( x ) + 1 cos 2 ( x ) = ( sec ( x ) tan ( x ) + s e c 2 ( x ) ) = ( sec ( x ) + tan ( x ) ) + C \begin{aligned} &\int \frac{1}{\sin(x)-1} {\color{#D61F06} \cdot\frac{\sin(x)+1}{\sin(x)+1}}dx\\ &=\int \frac{\sin(x)}{-\cos^2(x)}+\frac{1}{-\cos^2(x)}\\ &= -\left ( \int \sec(x)\tan(x) +\int sec^2(x) \right ) \\ &= -\left ( \sec(x)+\tan(x) \right ) + C \end{aligned}

Note2:

csc ( x ) csc ( x ) + cot ( x ) csc ( x ) + cot ( x ) d x = csc 2 ( x ) csc ( x ) cot ( x ) csc ( x ) + cot ( x ) d x = ln ( csc ( x ) + cot ( x ) ) + C \begin{aligned} &\int \csc(x){\color{#D61F06} \cdot \frac{\csc(x)+\cot(x)}{\csc(x)+\cot(x)}}dx\\ &= - \int \frac{-\csc^2(x)-\csc(x)\cot(x)}{\csc(x)+\cot(x)}dx\\ &= -\ln\left ( \csc(x)+\cot(x) \right ) + C \end{aligned}

Solution:

u = ln ( sin ( x ) ) d v = d x sin ( x ) 1 d u = cot ( x ) v = ( sec ( x ) + tan ( x ) ) \begin{aligned} &u=\ln(\sin(x)) && dv=\frac{dx}{\sin(x)-1} \\ &du=\cot(x) && v= -\left ( \sec(x)+\tan(x) \right ) \end{aligned}

ln ( sin ( x ) ) sin ( x ) 1 d x = ln ( sin ( x ) ) ( sec ( x ) + tan ( x ) ) + cot ( x ) ( sec ( x ) + tan ( x ) ) d x = ln ( sin ( x ) ) ( sec ( x ) + tan ( x ) ) + ( csc ( x ) + 1 ) d x = ln ( sin ( x ) ) ( sec ( x ) + tan ( x ) ) ln ( csc ( x ) + cot ( x ) ) + x = ln ( sin ( x ) ) ( sec ( x ) + tan ( x ) ) ln ( 1 + cos ( x ) ) + ln ( s i n ( x ) ) + x = ln ( sin ( x ) ) ( sec ( x ) + tan ( x ) 1 ) ln ( 1 + cos ( x ) ) + x 0 π / 2 ln ( sin ( x ) ) sin ( x ) 1 d x = ln ( sin ( x ) ) ( sec ( x ) + tan ( x ) 1 ) ln ( 1 + cos ( x ) ) + x 0 π / 2 x π / 2 ln ( sin ( x ) ) ( sec ( x ) + tan ( x ) 1 ) 0 x 0 ln ( sin ( x ) ) ( sec ( x ) + tan ( x ) 1 ) 0 0 π / 2 ln ( sin ( x ) ) sin ( x ) 1 d x = π 2 + ln ( 2 ) 2.26 \begin{aligned} & \int{\frac{\ln(\sin(x))}{\sin(x)-1}}dx &&= -\ln(\sin(x))\cdot \left ( \sec(x)+\tan(x) \right )+\int{\cot(x)\cdot \left ( \sec(x)+\tan(x) \right )dx} \\ &&& = -\ln(\sin(x))\cdot \left ( \sec(x)+\tan(x) \right )+\int{(\csc(x)+1)dx} \\ &&& = -\ln(\sin(x))\cdot \left ( \sec(x)+\tan(x) \right )- \ln\left ( \csc(x)+\cot(x) \right )+x \\ &&& = -\ln(\sin(x))\cdot \left ( \sec(x)+\tan(x) \right )- \ln\left ( 1+\cos(x) \right )+\ln(sin(x))+x \\ &&& = -\ln(\sin(x))\cdot \left ( \sec(x)+\tan(x)-1 \right )- \ln\left ( 1+\cos(x) \right )+x \\ & \int_0^{\pi/2}{\frac{\ln(\sin(x))}{\sin(x)-1}}dx &&= \left. -\ln(\sin(x))\cdot \left ( \sec(x)+\tan(x)-1 \right )- \ln\left ( 1+\cos(x) \right )+x \right |_0^{\pi/2} \\ & x\rightarrow \pi/2 && -\ln(\sin(x))\cdot \left ( \sec(x)+\tan(x)-1 \right )\rightarrow 0 \\ & x\rightarrow 0 && -\ln(\sin(x))\cdot \left ( \sec(x)+\tan(x)-1 \right )\rightarrow 0 \\ & \int_0^{\pi/2}{\frac{\ln(\sin(x))}{\sin(x)-1}}dx &&=\frac{\pi}{2}+\ln(2)\approx 2.26 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...