Calculus is not needed II

Geometry Level 4

α 2 4 × tan A + α × tan B + α 2 + 4 × tan C = 6 α \sqrt { { \alpha }^{ 2 }-4 } \times \tan { A } +\alpha \times \tan { B } +\sqrt { { \alpha }^{ 2 }+4 } \times \tan { C } =6\alpha

If α \alpha is real constant and A , B A, B and C C are variable angles satisfying the condition above, then find the least value of tan 2 A + tan 2 B + tan 2 C \tan ^{ 2 }{ A } +\tan ^{ 2 }{ B } +\tan ^{ 2 }{ C }


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanuj Ravi
Jan 18, 2016

The condition can be written as

( α 2 4 i + α j + α 2 + 4 k ) . ( tan A i + tan B j + tan C k ) = 6 α ) (\sqrt { { \alpha }^{ 2 }-4 } i+\alpha j+\sqrt { { \alpha }^{ 2 }+4 } k).(\tan { A } i+\tan { B } j+\tan { C } k)=6\alpha )

( α 2 4 ) + α 2 + ( α 2 + 4 ) × tan 2 A + tan 2 B + tan 2 C × cos β = 6 α \sqrt { ({ \alpha }^{ 2 }-4)+{ \alpha }^{ 2 }+({ \alpha }^{ 2 }+4) } \times \sqrt { \tan ^{ 2 }{ A } +\tan ^{ 2 }{ B } +\tan ^{ 2 }{ C } } \times \cos { \beta } =6\alpha

Simplifying

tan 2 A + tan 2 B + tan 2 C = 12 sec 2 β \tan ^{ 2 }{ A } +\tan ^{ 2 }{ B } +\tan ^{ 2 }{ C } =12\sec ^{ 2 }{ \beta }

Hence minimum value is 12 for sec β = 1 \sec { \beta } =1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...