Calculus is not required. Matrices are helpful. Question is about volume of an ellipsoid.

Algebra Level 5

What is the volume of the non-axial, not-at-origin ellipsoid specified by this expression: 45472 x 2 33192 x y 19200 x z + 33040 x + 55153 y 2 14400 y z 144220 y + 9225 z 2 7350 z 469675 0 45472 x^2-33192 x y-19200 x z+33040 x+55153 y^2- \\ 14400 y z -144220 y+9225 z^2-7350 z-469675\leq 0

I used less "than or equal to" rather than "equal to" so that I would not get arguments about a boundary (surface) has no volume, only the contents thereof.

The volume of an ellipsoid is 4 3 π a b c \frac43\pi a b c . The answer is the volume divided by π \pi , that is, 4 3 a b c \frac43 a b c , and is an integer.

2020 Aug 31 15:45Z, the solution has been greatly expanded to show how the problem was created.


The answer is 192.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

This solution uses linear algebra . That was warned in the problem title with "matrices are helpful". Linear algebra is usually taught in most educational institutions after the full course of calculus. There is no requirement for this as the two subjects are quite separate. I encountered matrices in the form of Cramer's Rule in my seventh grade in the American public schools during my formal introduction to multiple equations in multiple unknowns .

Converting the polynomial to the matrix form used below (please see: augmented matrices and homogeneous coordinates ):

( x y z 1 ) ( a 1 , 1 a 1 , 2 a 1 , 3 a 1 , 4 a 1 , 2 a 2 , 2 a 2 , 3 a 2 , 4 a 1 , 3 a 2 , 3 a 3 , 3 a 3 , 4 a 1 , 4 a 2 , 4 a 3 , 4 a 4 , 4 ) ( x y z 1 ) x 2 a 1 , 1 + 2 x y a 1 , 2 + 2 x z a 1 , 3 + 2 x a 1 , 4 + y 2 a 2 , 2 + 2 y z a 2 , 3 + 2 y a 2 , 4 + z 2 a 3 , 3 + 2 z a 3 , 4 + a 4 , 4 \left(\begin{array}{cccc}x&y&z&1 \\ \end{array}\right) \left( \begin{array}{cccc} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ a_{1,2} & a_{2,2} & a_{2,3} & a_{2,4} \\ a_{1,3} & a_{2,3} & a_{3,3} & a_{3,4} \\ a_{1,4} & a_{2,4} & a_{3,4} & a_{4,4} \\ \end{array} \right) \left(\begin{array}{c}x\\y\\z\\1 \\ \end{array}\right) \to \\ x^2 a_{1,1}+2 x y a_{1,2}+2 x z a_{1,3}+2 x a_{1,4}+y^2 a_{2,2}+2 y z a_{2,3}+2 y a_{2,4}+z^2 a_{3,3}+2 z a_{3,4}+a_{4,4}

Equating the coefficients of the two polynomials and solving for the matrix elements gives the matrix below.

The surface equation can be stated as: ( x y z 1 ) ( 45472 16596 9600 16520 16596 55153 7200 72110 9600 7200 9225 3675 16520 72110 3675 469675 ) ( x y z 1 ) = 0 \left(\begin{array}{cccc}x&y&z&1 \\ \end{array}\right) \left( \begin{array}{cccc} 45472 & -16596 & -9600 & 16520 \\ -16596 & 55153 & -7200 & -72110 \\ -9600 & -7200 & 9225 & -3675 \\ 16520 & -72110 & -3675 & -469675 \\ \end{array} \right) \left(\begin{array}{c}x\\y\\z\\1 \\ \end{array}\right) = 0

The center's coordinates are: ( 45472 16596 9600 16596 55153 7200 9600 7200 9225 ) ( x y z ) = ( 16520 72110 3675 ) \left( \begin{array}{ccc} 45472 & -16596 & -9600 \\ -16596 & 55153 & -7200 \\ -9600 & -7200 & 9225 \\ \end{array} \right) \left(\begin{array}{c}x\\y\\z \\ \end{array}\right) = \left(\begin{array}{c}16520\\-72110\\-3675 \\ \end{array}\right) . ( x y z ) = ( 12017 285610000 1461 71402500 128 2142075 1461 71402500 538 17850625 32 714025 128 2142075 32 714025 1321 6426225 ) ( 16520 72110 3675 ) = ( 1 2 3 ) \left(\begin{array}{c}x\\y\\z \\ \end{array}\right) =\left( \begin{array}{ccc} \frac{12017}{285610000} & \frac{1461}{71402500} & \frac{128}{2142075} \\ \frac{1461}{71402500} & \frac{538}{17850625} & \frac{32}{714025} \\ \frac{128}{2142075} & \frac{32}{714025} & \frac{1321}{6426225} \\ \end{array} \right)\left(\begin{array}{c}16520\\-72110\\-3675 \\ \end{array}\right)=\left(\begin{array}{c}-1\\-2\\-3 \\ \end{array}\right) or the ellipsoid's center is at x = 1 , y = 2 , z = 3 x= 1,y= 2,z= 3 .

The equation at the origin is 45472 x 2 33192 x y 19200 x z + 55153 y 2 14400 y z + 9225 z 2 608400 45472 x^2-33192 x y-19200 x z+55153 y^2-14400 y z+9225 z^2-608400 . This was done by substituting the new definitions of the coordinates and simplifying. This translation of the origin does not change the volume.

The equation restated in the form used above is: ( x y z 1 ) ( 45472 16596 9600 0 16596 55153 7200 0 9600 7200 9225 0 0 0 0 608400 ) ( x y z 1 ) = 0 \left(\begin{array}{cccc}x&y&z&1 \\ \end{array}\right) \left( \begin{array}{cccc} 45472 & -16596 & -9600 & 0 \\ -16596 & 55153 & -7200 & 0 \\ -9600 & -7200 & 9225 & 0 \\ 0 & 0 & 0 & -608400 \\ \end{array} \right) \left(\begin{array}{c}x\\y\\z\\1 \\ \end{array}\right) = 0 .

This is an interesting change in the central matrix's format and is characteristic of being at the origin.

The upper left 3x3 matrix's eigenvectors point in the directions to the ellipsoid's axes. If you do not understand that, then, stop, go read your linear algebra book to see what that means.

The eignvectors: ( 3 4 0 48 36 25 4 3 12 ) \left( \begin{array}{ccc} -3 & 4 & 0 \\ -48 & -36 & 25 \\ 4 & 3 & 12 \\ \end{array} \right)

Because we want a rotation matrix, we will want to normalize the eigenvectors, that is, make their length equal to 1.

The rotation matrix: ( 3 5 4 5 0 48 65 36 65 5 13 4 13 3 13 12 13 ) \left( \begin{array}{ccc} -\frac{3}{5} & \frac{4}{5} & 0 \\ -\frac{48}{65} & -\frac{36}{65} & \frac{5}{13} \\ \frac{4}{13} & \frac{3}{13} & \frac{12}{13} \\ \end{array} \right)

After the eignenvectors are normalized, taking the transpose of the result inverts the rotation matrix and makes it into the rotation matrix that puts the ellipsoid's axes onto the coordinate's axes. This transformation is also linear and does not change the ellipsoid's volume.

The inverse rotation matrix: ( 3 5 48 65 4 13 4 5 36 65 3 13 0 5 13 12 13 ) \left( \begin{array}{ccc} -\frac{3}{5} & -\frac{48}{65} & \frac{4}{13} \\ \frac{4}{5} & -\frac{36}{65} & \frac{3}{13} \\ 0 & \frac{5}{13} & \frac{12}{13} \\ \end{array} \right)

To rotate the ellpsoid into the coordinate system axes: x = 3 x 5 48 y 65 + 4 z 13 , y = 4 x 5 36 y 65 + 3 z 13 , z = 5 y 13 + 12 z 13 x= -\frac{3 x}{5}-\frac{48 y}{65}+\frac{4 z}{13},y= \frac{4 x}{5}-\frac{36 y}{65}+\frac{3 z}{13},z= \frac{5 y}{13}+\frac{12 z}{13} .

This gives the equation for the centered, oriented ellipsoid of 16 x 2 + 9 y 2 + z 2 = 144 16 x^2+9 y^2+z^2=144 or ( x 3 ) 2 + ( y 4 ) 2 + ( z 12 ) 2 = 1 \left(\frac{x}{3}\right)^2+\left(\frac{y}{4}\right)^2+\left(\frac{z}{12}\right)^2=1 .

Therefore, the volume divided by π \pi is 4 3 × 3 × 4 × 12 = 192 \frac43\times 3\times 4\times 12=192 .

This methodology easily can be extended to two dimensions or even more dimensions.

The numbers were kept to relatively small integers. Pythagorean triangles were used to avoid algebraic numbers (radicials). Higher dimensions were not used. This was done to keep the problem easier to work.

Here is how the problem was derived:

The variables are { x , y , z } \{x,y,z\} .

The (center* is: { 1 , 2 , 3 } \{1,2,3\} .

The first rotation matrix for a rotation of tan 1 ( 12 , 5 ) \tan ^{-1}(12,5) radians around the x x -axis based at the origin is: ( 1 0 0 0 0 12 13 5 13 0 0 5 13 12 13 0 0 0 0 1 ) \left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \frac{12}{13} & -\frac{5}{13} & 0 \\ 0 & \frac{5}{13} & \frac{12}{13} & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) .

The second rotation matrix for a rotation of tan 1 ( 3 , 4 ) \tan ^{-1}(3,4) radians around the z z -axis based at the origin is: ( 3 5 4 5 0 0 4 5 3 5 0 0 0 0 1 0 0 0 0 1 ) \left( \begin{array}{cccc} \frac{3}{5} & -\frac{4}{5} & 0 & 0 \\ \frac{4}{5} & \frac{3}{5} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right) .

The complete rotstion matrix was generated by: first . second ( 3 5 4 5 0 0 48 65 36 65 5 13 0 4 13 3 13 12 13 0 0 0 0 1 ) \text{first}.\text{second}\to \left( \begin{array}{cccc} \frac{3}{5} & -\frac{4}{5} & 0 & 0 \\ \frac{48}{65} & \frac{36}{65} & -\frac{5}{13} & 0 \\ \frac{4}{13} & \frac{3}{13} & \frac{12}{13} & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right)

Write the centered, oriented form of the ellipsoid: ( x 3 ) 2 + ( y 4 ) 2 + ( z 12 ) 2 = 1 \left(\frac{x}{3}\right)^2+\left(\frac{y}{4}\right)^2+\left(\frac{z}{12}\right)^2=1 .

The new variables in terms of the old variable after apply the combined rotation is { 3 x 5 4 y 5 , 48 x 65 + 36 y 65 5 z 13 , 4 x 13 + 3 y 13 + 12 z 13 } \left\{\frac{3 x}{5}-\frac{4 y}{5},\frac{48 x}{65}+\frac{36 y}{65}-\frac{5 z}{13},\frac{4 x}{13}+\frac{3 y}{13}+\frac{12 z}{13}\right\} .

The rotated polynomial: 1 144 ( 4 x 13 + 3 y 13 + 12 z 13 ) 2 + 1 16 ( 48 x 65 + 36 y 65 5 z 13 ) 2 + 1 9 ( 3 x 5 4 y 5 ) 2 1 = 0 2842 x 2 38025 461 x y 8450 16 x z 507 + 55153 y 2 608400 4 y z 169 + 41 z 2 2704 1 = 0 \frac{1}{144} \left(\frac{4 x}{13}+\frac{3 y}{13}+\frac{12 z}{13}\right)^2+\frac{1}{16} \left(\frac{48 x}{65}+\frac{36 y}{65}-\frac{5 z}{13}\right)^2+\frac{1}{9} \left(\frac{3 x}{5}-\frac{4 y}{5}\right)^2-1=0 \to \frac{2842 x^2}{38025}-\frac{461 x y}{8450}-\frac{16 x z}{507}+\frac{55153 y^2}{608400}-\frac{4 y z}{169}+\frac{41 z^2}{2704}-1 = 0 .

A second change of variables to move the ellipsoid from the origin: x x 1 , y y 2 , z z 3 x\to x-1,y\to y-2,z\to z-3 gives: 1 144 ( 4 ( x 1 ) 13 + 3 ( y 2 ) 13 + 12 ( z 3 ) 13 ) 2 + 1 16 ( 48 ( x 1 ) 65 + 36 ( y 2 ) 65 5 ( z 3 ) 13 ) 2 + 1 9 ( 3 ( x 1 ) 5 4 ( y 2 ) 5 ) 2 1 = 0 \frac{1}{144} \left(\frac{4 (x-1)}{13}+\frac{3 (y-2)}{13}+\frac{12 (z-3)}{13}\right)^2+\frac{1}{16} \left(\frac{48 (x-1)}{65}+\frac{36 (y-2)}{65}-\frac{5 (z-3)}{13}\right)^2+\frac{1}{9} \left(\frac{3 (x-1)}{5}-\frac{4 (y-2)}{5}\right)^2-1=0 ,

which simplifies to: 45472 x 2 33192 x y 19200 x z + 33040 x + 55153 y 2 14400 y z 144220 y + 9225 z 2 7350 z 469675 = 0 45472 x^2-33192 x y-19200 x z+33040 x+55153 y^2-14400 y z-144220 y+9225 z^2-7350 z-469675=0 .

Then, I had to learn how to solve my own problem as I dislike putting up problems without solutions.

A few more hyperlinks from Wolfram Mathematica:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...