If f ( n ) = k = 2 ∑ ∞ k n k ! 1 , then evaluate n = 2 ∑ ∞ f ( n ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Did it the same way : )
How you got intuition of telescoping series i calculated till 1/k*k-1
same
∑ n = 2 ∞ ∑ k = 2 ∞ k n ∗ k ! 1
changing the position of sum
∑ k = 2 ∞ ∑ n = 2 ∞ k n ∗ k ! 1
( ∑ k = 2 ∞ k ! 1 ( k 2 1 + k 3 1 + . . . . . + ∞ ) )
( ∑ k = 2 ∞ k ! 1 ( 1 + k 1 + k 2 1 + k 3 1 + . . . . . + ∞ − 1 − k 1 ) )
∑ k = 2 ∞ ( k − 1 ) ∗ ( k − 1 ) ! 1 − ∑ k = 2 ∞ k ! 1 − ∑ k = 2 ∞ k ∗ k 1 = 1 − e + 2
sorry last line should be ∑ k = 2 ∞ ( k − 1 ) ∗ ( k − 1 ) ! 1 − ∑ k = 2 ∞ k ! 1 − ∑ k = 2 ∞ k ∗ k ! 1 = 1 − e + 2
Problem Loading...
Note Loading...
Set Loading...
f ( n ) = k = 2 ∑ ∞ k n k ! 1
Thus,
n = 2 ∑ ∞ f ( n ) = n = 2 ∑ ∞ k = 2 ∑ ∞ k n k ! 1
Switching the sums,
n = 2 ∑ ∞ f ( n ) = k = 2 ∑ ∞ n = 2 ∑ ∞ k n k ! 1
n = 2 ∑ ∞ f ( n ) = k = 2 ∑ ∞ k ! 1 n = 2 ∑ ∞ k n 1
Now,
n = 2 ∑ ∞ k n 1 = k 2 1 + k 3 1 + … = 1 − k 1 k 2 1 = k ( k − 1 ) 1
Hence,
n = 2 ∑ ∞ f ( n ) = k = 2 ∑ ∞ k ! 1 × k ( k − 1 ) 1
n = 2 ∑ ∞ f ( n ) = k = 2 ∑ ∞ k 2 ( k − 1 ) ( k − 1 ) ! 1
n = 2 ∑ ∞ f ( n ) = k = 2 ∑ ∞ ( k − 1 ) ! 1 ( k − 1 1 − k 2 k + 1 )
n = 2 ∑ ∞ f ( n ) = k = 2 ∑ ∞ ( k − 1 ) ! 1 ( k − 1 1 − k 1 − k 2 1 )
n = 2 ∑ ∞ f ( n ) = k = 2 ∑ ∞ ( ( k − 1 ) ( k − 1 ) ! 1 − k k ! 1 − k ! 1 )
Note that the first two terms form a Telescoping series , thus,
n = 2 ∑ ∞ f ( n ) = 1 − k = 2 ∑ ∞ k ! 1
Now,
k = 2 ∑ ∞ k ! 1 = e − 1 − 1 = e − 2
Hence,
n = 2 ∑ ∞ f ( n ) = 1 − ( e − 2 ) = 3 − e = 0 . 2 8 1 7