An Iterated Sum Using Calculus And/Or Algebra

Calculus Level 4

If f ( n ) = k = 2 1 k n k ! f(n) = \displaystyle \sum_{k=2}^{\infty} \frac{1}{k^nk!} , then evaluate n = 2 f ( n ) \displaystyle \sum_{n=2}^{\infty} f(n) .

This problem appeared in HMMT.


The answer is 0.2817.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anish Puthuraya
Feb 18, 2014

f ( n ) = k = 2 1 k n k ! \displaystyle f(n) = \sum_{k=2}^{\infty} \frac{1}{k^nk!}

Thus,

n = 2 f ( n ) = n = 2 k = 2 1 k n k ! \displaystyle \sum_{n=2}^{\infty} f(n) = \sum_{n=2}^{\infty} \sum_{k=2}^{\infty} \frac{1}{k^nk!}

Switching the sums,

n = 2 f ( n ) = k = 2 n = 2 1 k n k ! \displaystyle \sum_{n=2}^{\infty} f(n) = \sum_{k=2}^{\infty} \sum_{n=2}^{\infty} \frac{1}{k^nk!}

n = 2 f ( n ) = k = 2 1 k ! n = 2 1 k n \displaystyle \sum_{n=2}^{\infty} f(n) = \sum_{k=2}^{\infty} \frac{1}{k!} \sum_{n=2}^{\infty} \frac{1}{k^n}

Now,
n = 2 1 k n = 1 k 2 + 1 k 3 + = 1 k 2 1 1 k = 1 k ( k 1 ) \displaystyle \sum_{n=2}^{\infty} \frac{1}{k^n} = \frac{1}{k^2} +\frac{1}{k^3} + \ldots = \frac{\frac{1}{k^2}}{1-\frac{1}{k}} = \frac{1}{k(k-1)}

Hence,

n = 2 f ( n ) = k = 2 1 k ! × 1 k ( k 1 ) \displaystyle \sum_{n=2}^{\infty} f(n) = \sum_{k=2}^{\infty} \frac{1}{k!}\times \frac{1}{k(k-1)}

n = 2 f ( n ) = k = 2 1 k 2 ( k 1 ) ( k 1 ) ! \displaystyle \sum_{n=2}^{\infty} f(n) = \sum_{k=2}^{\infty} \frac{1}{k^2(k-1)(k-1)!}

n = 2 f ( n ) = k = 2 1 ( k 1 ) ! ( 1 k 1 k + 1 k 2 ) \displaystyle \sum_{n=2}^{\infty} f(n) = \sum_{k=2}^{\infty} \frac{1}{(k-1)!} \left(\frac{1}{k-1}-\frac{k+1}{k^2}\right)

n = 2 f ( n ) = k = 2 1 ( k 1 ) ! ( 1 k 1 1 k 1 k 2 ) \displaystyle \sum_{n=2}^{\infty} f(n) = \sum_{k=2}^{\infty} \frac{1}{(k-1)!} \left(\frac{1}{k-1} -\frac{1}{k} -\frac{1}{k^2}\right)

n = 2 f ( n ) = k = 2 ( 1 ( k 1 ) ( k 1 ) ! 1 k k ! 1 k ! ) \displaystyle \sum_{n=2}^{\infty} f(n) = \sum_{k=2}^{\infty} \left(\frac{1}{(k-1)(k-1)!}-\frac{1}{kk!}-\frac{1}{k!}\right)

Note that the first two terms form a Telescoping series , thus,

n = 2 f ( n ) = 1 k = 2 1 k ! \displaystyle \sum_{n=2}^{\infty} f(n) = 1 - \sum_{k=2}^{\infty}\frac{1}{k!}

Now,
k = 2 1 k ! = e 1 1 = e 2 \displaystyle \sum_{k=2}^{\infty} \frac{1}{k!} = e - 1 - 1 = e-2

Hence,

n = 2 f ( n ) = 1 ( e 2 ) = 3 e = 0.2817 \displaystyle \sum_{n=2}^{\infty} f(n) = 1- (e-2) = 3 - e = \boxed{0.2817}

Did it the same way : )

Karthik Kannan - 7 years, 3 months ago

How you got intuition of telescoping series i calculated till 1/k*k-1

dp dp - 7 years, 3 months ago

same

Mandar Sohoni - 7 years, 3 months ago
Bedadipta Bain
Feb 26, 2014

n = 2 k = 2 1 k n k ! \sum _{ n=2 }^{ \infty }{ \sum _{ k=2 }^{ \infty }{ \frac { 1 }{{ k}^{n}*k! } } }

changing the position of sum

k = 2 n = 2 1 k n k ! \sum _{ k=2 }^{ \infty }{ \sum _{ n=2 }^{ \infty }{ \frac { 1 }{ { k }^{ n }*k! } } }

( k = 2 1 k ! ( 1 k 2 + 1 k 3 + . . . . . + ) ) (\sum _{ k=2 }^{ \infty }{ \frac { 1 }{ k! } { \left( \frac { 1 }{ { k }^{ 2 } } +\frac { 1 }{ { k }^{ 3 } } +.....+\infty \right) } } )

( k = 2 1 k ! ( 1 + 1 k + 1 k 2 + 1 k 3 + . . . . . + 1 1 k ) ) (\sum _{ k=2 }^{ \infty }{ \frac { 1 }{ k! } { \left( 1+\frac { 1 }{ k } +\frac { 1 }{ { k }^{ 2 } } +\frac { 1 }{ { k }^{ 3 } } +.....+\infty \quad -1-\frac { 1 }{ k } \right) } } )

k = 2 1 ( k 1 ) ( k 1 ) ! k = 2 1 k ! k = 2 1 k k = 1 e + 2 \sum _{ k=2 }^{ \infty }{ \frac { 1 }{ \left( k-1 \right) *\left( k-1 \right) ! } -\sum _{ k=2 }^{ \infty }{ \frac { 1 }{ k! } } } -\sum _{ k=2 }^{ \infty }{ \frac { 1 }{ k*k } } =1-e+2

sorry last line should be k = 2 1 ( k 1 ) ( k 1 ) ! k = 2 1 k ! k = 2 1 k k ! = 1 e + 2 \sum _{ k=2 }^{ \infty }{ \frac { 1 }{ \left( k-1 \right) *\left( k-1 \right) ! } -\sum _{ k=2 }^{ \infty }{ \frac { 1 }{ k! } } } -\sum _{ k=2 }^{ \infty }{ \frac { 1 }{ k*k! } } =1-e+2

Bedadipta Bain - 7 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...