Follow that dot

Calculus Level 2

The coordinates of a dot P P moving in the x y xy plane at time t t are given by: x = 5 e t cos t x = 5e^{-t}\cos t and y = 5 e t sin t y = 5e^{-t} \sin t . Let L a L_a be the distance traveled by P P in the interval 0 t a 0 \leq t \leq a . If lim a L a = z \displaystyle \lim_{a \to \infty} L_a = z , what is the value of z 2 z^2 ?


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ricky Escobar
Dec 17, 2013

By the arc length formula for a parametrically-defined curve, we have L a = 0 a ( x ( t ) ) 2 + ( y ( t ) ) 2 d t = 0 a ( 5 e t cos t 5 e t sin t ) 2 + ( 5 e t sin t + 5 e t cos t ) 2 d t = 0 a 5 e t ( cos t sin t ) 2 + ( sin t + cos t ) 2 d t = 0 a 5 e t cos 2 t 2 sin t cos t + sin 2 t + sin 2 t + 2 sin t cos t + cos 2 t d t = 0 a 5 e t 2 sin 2 t + 2 cos 2 t d t = 5 2 0 a e t d t = 5 2 [ e t ] 0 a = 5 2 e a + 5 2 . \begin{aligned} L_a &= \int_0^a \sqrt{(x'(t))^2+(y'(t))^2}dt \\ &=\int_0^a \sqrt{\left( -5e^{-t}\cos t-5e^{-t} \sin t \right)^2 + \left( -5e^{-t} \sin t +5e^{-t}\cos t \right)^2}dt \\ &=\int_0^a 5e^{-t} \sqrt{\left(\cos t- \sin t \right)^2 + \left(\sin t +\cos t \right)^2}dt \\ &=\int_0^a 5e^{-t} \sqrt{\cos^2 t-2\sin t \cos t+\sin^2 t + \sin^2 t + 2\sin t \cos t + \cos^2 t}dt \\ &=\int_0^a 5e^{-t} \sqrt{2\sin^2 t + 2\cos^2 t}dt \\ &=5\sqrt{2} \int_0^a e^{-t}dt = -5\sqrt{2} \left[ e^{-t} \right]_0^a =-5\sqrt{2} \, e^{-a} +5\sqrt{2}. \end{aligned}

Now we take the limit: z = lim a L a = lim a ( 5 2 e a + 5 2 ) = 5 2 . z=\lim_{a \to \infty} L_a = \lim_{a \to \infty} \left( -5 \, \sqrt{2}e^{-a} +5\sqrt{2} \right)=5\sqrt{2}. So, z 2 = 50 z^2=\boxed{50} .

i forgot it was asking for the square of z... sht.

Diego Fernandez de la Pradilla - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...