The coordinates of a dot moving in the plane at time are given by: and . Let be the distance traveled by in the interval . If , what is the value of ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
By the arc length formula for a parametrically-defined curve, we have L a = ∫ 0 a ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 d t = ∫ 0 a ( − 5 e − t cos t − 5 e − t sin t ) 2 + ( − 5 e − t sin t + 5 e − t cos t ) 2 d t = ∫ 0 a 5 e − t ( cos t − sin t ) 2 + ( sin t + cos t ) 2 d t = ∫ 0 a 5 e − t cos 2 t − 2 sin t cos t + sin 2 t + sin 2 t + 2 sin t cos t + cos 2 t d t = ∫ 0 a 5 e − t 2 sin 2 t + 2 cos 2 t d t = 5 2 ∫ 0 a e − t d t = − 5 2 [ e − t ] 0 a = − 5 2 e − a + 5 2 .
Now we take the limit: z = a → ∞ lim L a = a → ∞ lim ( − 5 2 e − a + 5 2 ) = 5 2 . So, z 2 = 5 0 .