Calculus problem #1877

Calculus Level 3

A figure is drawn on the x-y plane. Each point ( x , y ) (x,y) on the figure satisfies the following equations: x = 3 sin θ + 4 cos θ x = 3\sin \theta + 4 \cos \theta and y = 4 sin θ 3 cos θ y = 4\sin \theta - 3 \cos \theta , for all 0 θ 2 π 0 \leq \theta \leq 2 \pi . What is the length of the figure?


The answer is 31.4159.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tunk-Fey Ariawan
Jan 31, 2014

We have d x d θ = 3 cos θ 4 sin θ ( d x d θ ) 2 = 9 cos 2 θ + 16 sin 2 θ 12 sin 2 θ \begin{aligned} \frac{dx}{d\theta}&=3\cos \theta-4\sin\theta\\ \left(\frac{dx}{d\theta}\right)^2&=9 \cos^2\theta+16 \sin^2\theta-12 \sin2\theta \end{aligned} and d y d θ = 4 cos θ + 3 sin θ ( d y d θ ) 2 = 16 cos 2 θ + 9 sin 2 θ + 12 sin 2 θ \begin{aligned} \frac{dy}{d\theta}&=4\cos\theta+3\sin \theta\\ \left(\frac{dy}{d\theta}\right)^2&=16 \cos^2\theta+9 \sin^2\theta+12 \sin2\theta \end{aligned} Thus, we obtain L = 0 2 π ( d x d θ ) 2 + ( d y d θ ) 2 d θ = 0 2 π 16 ( sin 2 θ + cos 2 θ ) + 9 ( sin 2 θ + cos 2 θ ) d θ = 0 2 π 5 d θ = 10 π 31.416 \begin{aligned} L &= \int_{0}^{2\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^2+\left(\frac{dy}{d\theta}\right)^2}\,d\theta\\ &= \int_{0}^{2\pi} \sqrt{16(\sin^2\theta+\cos^2\theta)+9(\sin^2\theta+\cos^2\theta)}\,d\theta\\ &=\int_{0}^{2\pi} 5\,d\theta\\ &=10\pi\\ &\approx \boxed{31.416} \end{aligned} # Q . E . D . # \text{\# }\mathbb{Q}.\mathbb{E}.\mathbb{D}.\text{\#}

Or else x 2 + y 2 = 25 x^2 + y^2 = 25 , so the figure is a circle with O ( 0 , 0 ) O(0,0) as centre and radius 5 u n i t s 5 units . And each point on the circle corresponds to some angle θ \theta . Thus the length is the circumference of the triangle, I.e., 10 π = 31.416 10 \pi = 31.416 units.

Shourya Pandey - 7 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...