Calculus problem #1938

Calculus Level pending

Find the value of C ( x 4 d x + x y d y ) \displaystyle \oint_C (x^4\ dx + xy\ dy) where C C is the path around the triangle with vertices ( 0 , 0 ) (0,0) , ( 1 , 0 ) (1,0) and ( 0 , 1 ) (0,1) .


The answer is 0.1666666666666666574148081281236954964697360992431640625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arron Kau Staff
May 13, 2014

Let P ( x , y ) = x 4 P(x,y) = x^4 and Q ( x , y ) = x y Q(x,y) = xy . By Green’s theorem, we have C ( P ( x , y ) d x + Q ( x , y ) d y ) = A ( Q ( x , y ) x P ( x , y ) y ) \displaystyle \oint_C (P(x,y)\ dx + Q(x,y)\ dy) = \iint_A \left(\frac{\partial Q(x,y)}{\partial x} - \frac{\partial P(x,y)}{\partial y}\right) , where C C is the path and A A is the area enclosed by the path. So, we have Q ( x , y ) x = y \frac{\partial Q(x,y)}{\partial x} = y , P ( x , y ) y = 0 \frac{\partial P(x,y)}{\partial y} =0 and Q ( x , y ) x P ( x , y ) y = y 0 = y \frac{\partial Q(x,y)}{\partial x} - \frac{\partial P(x,y)}{\partial y} = y-0= y . Substituting this in to the double integral, we have

C ( x 4 d x + x y d y ) = 0 1 0 1 x y d y d x = 0 1 [ y 2 2 ] y = 0 y = 1 x d x = 0 1 ( 1 2 x + x 2 2 ) d x = [ x 2 x 2 2 + x 3 6 ] 0 1 = 1 6 . 16666 \begin{aligned} \displaystyle \oint_C (x^4\ dx + xy\ dy) &= \int_0^1\int_0^{1-x} y\ dy\ dx \\ &= \int_0^1 \left[\frac{y^2}{2}\right]_{y=0}^{y=1-x}\ dx \\ &= \int_0^1 \left(\frac{1-2x+x^2}{2}\right)\ dx \\ &= \left[\frac{x}{2} - \frac{x^2}{2} + \frac{x^3}{6} \right]_0^1 \\ &= \frac{1}{6} \approx .16666\dots \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...