Calculus problem #2069

Calculus Level 4

Consider the vector function given by F ( x , y , z ) = z i + y j x k F(x,y,z)=z\ \boldsymbol{i}+y\ \boldsymbol{j}-x\ \boldsymbol{k} . Let C C be the curve given by r ( t ) = t i + sin t j + cos t k \boldsymbol{r}(t)=t\ \boldsymbol{i} + \sin t\ \boldsymbol{j} + \cos t\ \boldsymbol{k} , where 0 t π 0 \leq t \leq \pi . What is the value of

N = C F d r ? N = \int_C \boldsymbol{F} \cdot d \boldsymbol{r} ?


The answer is 3.14159.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Nishant Sharma
Dec 31, 2013

r ( t ) = t i + s i n t j + c o s t k \textbf{r}(t)=t\,\textbf{i}+sint\,\textbf{j}+cost\,\textbf{k} .

So d r = d t i + c o s t d t j s i n t d t k \;\:\mathrm{d}\textbf{r}=\mathrm{d}t\,\textbf{i}+cost\,\mathrm{d}t\textbf{j}-sint\,\mathrm{d}t\,\textbf{k}

Now F d r = c o s t d t + s i n t c o s t d t + t s i n t d t F\cdot\,\mathrm{d}\textbf{r}=cost\,\mathrm{d}t+sint\,cost\,\mathrm{d}t+t\,sint\,\mathrm{d}t .

The given integral equals 0 π c o s t d t + s i n t c o s t d t + t s i n t d t = π = 3.142 \int_0^\pi\,cost\,\mathrm{d}t+sint\,cost\,\mathrm{d}t+t\,sint\,\mathrm{d}t=\pi=\boxed{3.142} .

NOTE: The first two integrands integrate to zero, which can be easily realized from their respective graphs.

I am a victim of harassement.

M Bi5on - 1 year, 5 months ago
Vitor Terra
Dec 16, 2013

From the definition of line integral of a vector field:

N = C F d r = 0 π F ( γ ( t ) ) γ ( t ) d t N = \int_C \textbf{F} \cdot d\textbf{r} = \int_0^\pi \textbf{F}(\gamma (t)) \cdot \gamma ' (t)dt

Since

γ ( t ) = ( t , sin t , cos t ) \gamma (t) = (t, \sin t, \cos t) , γ ( t ) = ( 1 , cos t , sin t ) \gamma ' (t) = (1, \cos t, -\sin t) , F ( γ ( t ) ) = ( z ( t ) , y ( t ) , x ( t ) ) = ( cos t , sin t , t ) \textbf{F}(\gamma (t)) = (z(t), y(t), -x(t)) = (\cos t, \sin t, -t)

It follows that

F ( γ ( t ) ) γ ( t ) = ( cos t , sin t , t ) ( 1 , cos t , sin t ) = cos t + sin t cos t + t sin t F(\gamma(t)) \cdot \gamma ' (t) = (\cos t, \sin t, -t) \cdot (1, \cos t, -\sin t) = \cos t + \sin t \cos t + t\sin t

Hence

N = 0 π ( cos t + sin t cos t + t sin t ) d t = ( sin t cos 2 t 4 + sin t t cos t ) 0 π N = \int_0^\pi (\cos t + \sin t \cos t + t\sin t)dt = (\sin t - \frac{\cos 2t}{4} + \sin t - t \cos t )\Bigg|_0^\pi

= π cos ( π ) = π 3.142 =-\pi \cos (-\pi) = \pi \approx \boxed{3.142}

I am a victim of harassement.

M Bi5on - 1 year, 5 months ago
Andres Saez
Dec 29, 2013

C F d r = 0 π cos t d d t t + sin t d d t sin t t d d t cos t = π \int_C \mathbf{F} \cdot d \mathbf{r} = \int_0^{\pi} \cos{t} \cdot \frac{d}{dt} t + \sin{t} \cdot \frac{d}{dt} \sin{t} - t \cdot \frac{d}{dt} \cos{t} = \boxed{\pi}

I am a victim of harassement.

M Bi5on - 1 year, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...