Calculus problem #2130

Calculus Level 3

Evaluate

lim x ( x 2 + x x ) \large \lim_{x \to \infty} \left(\sqrt{\left \lfloor x^2+x \right \rfloor}-x \right)

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Snehal Shekatkar
Dec 21, 2013

We notice that since we want limit as x x\rightarrow \infty , we can only consider integer values of x x . Then we get:

x 2 + x = x 2 + x \lfloor x^{2}+x\rfloor = x^{2}+x .

After this simplification, we can write,

N = L i m x x ( 1 + 1 x ) 1 2 x N=Lim_{x\rightarrow \infty}x(1+\frac{1}{x})^{\frac{1}{2}}-x

N = L i m x ( 1 + 1 x ) 1 2 1 1 x \therefore N=Lim_{x\rightarrow \infty}\frac{(1+\frac{1}{x})^{\frac{1}{2}}-1}{\frac{1}{x}}

Now using L'Hospital's Rule , we get,

N = L i m x 1 2 ( 1 + 1 x ) 1 2 ( 1 x 2 ) 1 x 2 N=Lim_{x\rightarrow \infty}\frac{\frac{1}{2}(1+\frac{1}{x})^{\frac{-1}{2}}(\frac{-1}{x^{2}})}{\frac{-1}{x^{2}}}

This gives, N = 1 2 N=\boxed{\frac{1}{2}}

Well, At step-#2 itself, one can use Binomial Expansion and you get the same answer, which is how I did ;)

Sai Nikhil Thirandas - 7 years, 5 months ago
Shaun Loong
Mar 26, 2014

We open up the floor function such that x 2 + x = x 2 + x + k \left \lfloor x^{2}+x \right \rfloor=x^{2}+x+k , where k k is the decimal part of x 2 + x x^2+x . Then: lim x ( x 2 + x x ) = lim x ( x 2 + x + k x ) \lim_{x\rightarrow \infty }(\sqrt{\left \lfloor x^{2}+x \right \rfloor}-x)=\lim_{x\rightarrow \infty }(\sqrt{x^{2}+x+k}-x) Multiplying with its conjugate, we get: lim x ( x 2 + x + k x ) = lim x ( x 2 + x + k x 2 x 2 + x + k + x ) \lim_{x\rightarrow \infty }(\sqrt{x^{2}+x+k}-x)=\lim_{x\rightarrow \infty }(\frac{{x^{2}+x+k}-x^{2}}{\sqrt{x^{2}+x+k}+x}) Then, we can circumvent this equation by dividing all terms with the highest power of x x in the denominator. With that, we obtain: lim x ( x 2 + x + k x 2 x 2 + x + k + x ) = lim x ( 1 x ( x + k ) 1 x ( x 2 + x + k + x ) ) \lim_{x\rightarrow \infty }(\frac{{x^{2}+x+k}-x^{2}}{\sqrt{x^{2}+x+k}+x})=\lim_{x\rightarrow \infty }(\frac{\frac{1}{x}(x+k)}{\frac{1}{x}(\sqrt{x^{2}+x+k}+x)}) = lim x ( 1 + k x 1 + 1 x + k x 2 + 1 ) =\lim_{x\rightarrow \infty }(\frac{1+\frac{k}{x}}{\sqrt{1+\frac{1}{x}+\frac{k}{x^{2}}}+1}) Since x x\rightarrow \infty , then 1 x 0 \frac{1}{x}\rightarrow 0 , lim x ( 1 + k x 1 + 1 x + k x 2 + 1 ) = 1 1 + 1 \therefore \lim_{x\rightarrow \infty }(\frac{1+\frac{k}{x}}{\sqrt{1+\frac{1}{x}+\frac{k}{x^{2}}}+1})=\frac{1}{\sqrt{1}+1} Our desired answer is 1 2 \boxed{\frac{1}{2}} .

Substitute 99999 for infinity, then the expression will yield 0.499999...

Aditya Kulkarni
Dec 17, 2013

The question states that the given limit exists over the set of real numbers. Thus, it implies that the limit would also exist if we constraint the variable x to move only through the set of natural numbers as it reaches infinity. So the problem can be reworded to N= \limit\n\infinity (sqrt(n^2+n)-n). This on rationalization reduces to n/sqrt(n^2+n) + n. This yields 0.5

How?

A Brilliant Member - 7 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...