Calculus problem #2152

Calculus Level 2

If y = ( ln x ) x y=(\ln x)^x , what is the derivative of y y at x = e x=e ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

DreamRunner Moshi
Dec 25, 2013

y = ( ln x ) x y = {(\ln{x})}^{x} = > ln y = x ln ( ln x ) =>\ln{y} = x\ln{(\ln{x})} = > 1 y d y d x = x × 1 ln x × 1 x + ln ( ln x ) =>\frac{1}{y}\frac{dy}{dx} = x\times{\frac{1}{\ln{x}}}\times{\frac{1}{x}}+\ln{(\ln{x})} = > d y d x = y × ( x × 1 ln x × 1 x + ln ( ln x ) ) =>\frac{dy}{dx} = y\times(x\times{\frac{1}{\ln{x}}}\times{\frac{1}{x}}+\ln{(\ln{x})}) = > d y d x = ( ln x ) x × ( x × 1 ln x × 1 x + ln ( ln x ) ) =>\frac{dy}{dx} = {(\ln{x})}^{x}\times(x\times{\frac{1}{\ln{x}}}\times{\frac{1}{x}}+\ln{(\ln{x})})

Putting x = e derivative is: ( ln e ) e × ( e × 1 ln e × 1 e + ln ( ln e ) ) {(\ln{e})}^{e}\times(e\times{\frac{1}{\ln{e}}}\times{\frac{1}{e}}+\ln{(\ln{e})}) = 1 =\boxed{1}

I've made a mistake when putting x = e initially, so I had y = lne^{e} = const then y' = 0

Duy BK - 7 years, 4 months ago

Log in to reply

Yeah, I made that mistake too...

Justin Chan - 7 years, 3 months ago
Anish Shah
Dec 25, 2013

At x = e x = e , y = ( ln e ) e = 1 y = (\ln e)^{e} = 1

y = ( ln x ) x y = (\ln x)^{x}

ln y = x × ln ( ln x ) \ln y = x \times \ln(\ln x)

Differentiating with respect to x,

1 y × d y d x = ln ( ln x ) + 1 ln x \frac{1}{y} \times \frac{dy}{dx} = \ln(\ln x) + \frac{1}{\ln x }

At x = e and y = 1,

1 × d y d x = 0 + 1 = 1 1 \times \frac{dy}{dx} = 0 + 1 = 1

Rajat Dwivedi
Jan 21, 2014

taking log both sides and then differentiating so that dy/dx=y.{ln(lnx)+1/lnx}

Rohit Kashyap
Jan 18, 2014

y=(ln x)^x taking log base 'e' on both the sides we arrive at, =1/y* dy/dx=ln( ln x) + x (1/ln(x) ) * (1/x) {Using chain rule} =1 dy/dx= 0+1 {at x=e} =1

Lukmanul Hakim
Jan 5, 2014

y = ( ln x ) x y = (\ln x)^x

ln y = x . ln ( ln x ) ) \ln y = x . \ln(\ln x))

y y = 1. ln ( l n x ) + 1 ln x . 1 x . x \frac{y'}{y} = 1 . \ln(ln x) + \frac{1}{\ln x} . \frac{1}{x} . x

y = y . ( ln ( ln x ) + 1 ln x ) . y' = y . (\ln(\ln x) + \frac{1}{\ln x}) .

y = ( ln x ) x . ( ln ( ln x ) + 1 ln x ) y' = (\ln x)^x . (\ln(\ln x) + \frac{1}{\ln x})

When x = e x = e , then

y ( e ) = ( ln e ) e . ( ln ( ln e ) + 1 ln e ) y'(e) = (\ln e)^e . (\ln(\ln e) + \frac{1}{\ln e})

y ( e ) = 1 e . ( ln 1 + 1 1 ) y'(e) = 1^e . (\ln 1 + \frac{1}{1})

y ( e ) = 1. ( 0 + 1 ) y'(e) = 1 . (0 + 1)

y ( e ) = 1 \boxed{ y'(e) = 1 }

would you tell me please ,Why do we put ( Ln e) =1 ???

heba mohamed - 7 years, 5 months ago

Log in to reply

ln x \ln x is actually log e x \log_e x and log x x = 1 \log_x x = 1 for any x R x \in \mathbb{R}

So, if x = e x = e , then ln e = log e e = 1 \ln e = \log_e e = 1

Lukmanul Hakim - 7 years, 5 months ago
Justin Chan
Feb 22, 2014

Actually, all you have to do is to find the derivative of { (\ln { x) } }^{ x } and then (using power rule and derivative of natural log) you get \frac { 1 }{ x } x, which is just 1 (the answer!)

Sorry, formatting didn't work properly...

Justin Chan - 7 years, 3 months ago
Shenouda Issa
Feb 13, 2014

y=({ \ln { x } ) }^{ x }\quad \ y=({ \ln { e } })^{ e }\quad where\quad x=e\ y={ 1 }^{ e }\ y=1

y = ( ln x ) x y = ( ln e ) e w h e r e x = e y = 1 e y = 1 y=({ \ln { x } ) }^{ x }\quad \ y=({ \ln { e } })^{ e }\quad where\quad x=e\ y={ 1 }^{ e }\ y=1

DreamRunner Moshi - 7 years, 3 months ago

Log in to reply

Totally wrong lol. They want the value of y' NOT y. It happens that it's the same value here , but it will not happen everytime

Felipe Magalhaes - 7 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...