Calculus problem #2154

Calculus Level 3

A curve is defined by ( x , y ) = ( cos 3 θ , sin 3 θ ) (x,y) =\left(\cos^3 \theta, \sin^3 \theta \right) . If the equation for the tangent line at θ = 2 3 π \theta=\frac{2}{3}\pi is y = a x + b y=ax+b , what is the value of a × b a \times b ?


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Equation of the given curve is x = c o s 3 θ , y = s i n 3 θ x=cos^3 \theta, y=sin^3 \theta

Now, x = c o s 3 θ x=cos^3 \theta Differentiating both sides w.r.t x x , d x d θ = 3 s i n θ c o s 2 θ \frac{dx}{d \theta} = -3sin \theta cos^2 \theta And, y = s i n 3 θ y=sin^3 \theta Differentiating both sides w.r.t x x , d y d θ = 3 c o s θ s i n 2 θ \frac{dy}{d \theta} = 3cos \theta sin^2 \theta So, d y d x = d y d θ d x d θ \frac{dy}{dx} = \frac{ \frac{dy}{d \theta}}{ \frac{dx}{d \theta}} or, d y d x = 3 c o s θ s i n 2 θ 3 s i n θ c o s 2 θ \frac{dy}{dx} = - \frac{3cos \theta sin^2 \theta}{-3sin \theta cos^2 \theta} or, d y d x = t a n θ \frac{dy}{dx} = -tan \theta

This is the slope of the tangent to the curve at any arbitrary point ( x , y ) (x, y) .

When θ = 2 π 3 \theta = \frac{2 \pi}{3} , Slope of tangent = t a n θ = t a n 2 π 3 = ( 3 ) = 3 -tan \theta=-tan \frac{2 \pi}{3}=-(- \sqrt{3})= \sqrt{3}

So, the equation of the tangent at ( x , y ) (x, y) using the point-slope form is given by y s i n 3 θ = 3 ( x c o s 3 θ ) y-sin^3 \theta= \sqrt{3}(x-cos^3 \theta) Upon simplification, we get y = 3 x + s i n 3 θ 3 c o s 3 θ y= \sqrt{3}x+sin^3 \theta- \sqrt{3}cos^3 \theta But, θ = 2 π 3 \theta = \frac{2 \pi}{3} . So, the equation of tangent becomes y = 3 x + s i n 3 2 π 3 3 c o s 3 2 π 3 y= \sqrt{3}x+sin^3 \frac{2 \pi}{3}- \sqrt{3}cos^3 \frac{2 \pi}{3}

Therefore, a = 3 a= \sqrt{3} and b = s i n 3 2 π 3 3 c o s 3 2 π 3 b=sin^3 \frac{2 \pi}{3}- \sqrt{3}cos^3 \frac{2 \pi}{3} b b can be further simplified as b = 3 3 8 + 3 8 = 3 + 3 3 8 = 4 3 8 = 3 2 b= \frac{3 \sqrt{3}}{8}+ \frac{ \sqrt{3}}{8}= \frac{ \sqrt{3}+3 \sqrt{3}}{8}= \frac{4 \sqrt{3}}{8}= \frac{ \sqrt{3}}{2}

So, finally we get a = 3 a= \sqrt{3} and b = 3 2 b=\frac{ \sqrt{3}}{2}

Therefore, a × b = 3 × 3 2 = 3 2 = 1.5 a \times b =\sqrt{3} \times \frac{ \sqrt{3}}{2}= \frac{3}{2} = \boxed{1.5}

Oops! I made two typos - lines 4 and 8 should read Differentiating both sides w.r.t θ \theta , not Differentiating both sides w.r.t x x

Kou$htav Chakrabarty - 7 years, 5 months ago
Ricky Escobar
Dec 17, 2013

First, we notice that at θ = 2 π / 3 \theta = 2\pi/3 we have $$(x,y)=\left(-\frac{1}{8},\frac{3\sqrt{3}}{8}\right).$$ To find the tangent line, we must find its slope, or d y d x \frac{dy}{dx} . $$\frac{dy}{dx}=\frac{dy/d\theta}{dx/d\theta}=\frac{3 \,\sin^2 \theta \, \cos \theta}{-3 \, \cos^2 \theta \, \sin \theta}=-\tan \theta.$$ So, at θ = 2 π / 3 \theta=2\pi/3 , we have $$\frac{dy}{dx} = \sqrt{3}.$$ Using the point-slope formula, the equation for the tangent line is $$y- \frac{3 \sqrt{3}}{8} = \sqrt{3} \left(x+\frac{1}{8}\right).$$ Rearranging, we get $$y=\sqrt{3}x+\frac{\sqrt{3}}{2},$$ so a = 3 a=\sqrt{3} and b = 3 2 b=\frac{\sqrt{3}}{2} and their product is $$a \times b = \frac{3}{2} = \boxed{1.5}.$$

Wissam Akil
Dec 1, 2015

the gradient of the normal to the point at Θ = ( 2 / 3 ) Π \Theta =(2/3)\Pi is given by : g r a d i e n t = a = ( y 2 y 1 ) ( x 2 x 1 ) gradient=a=\frac{(y_{2}-y_{1})}{(x_{2}-x_{1})} with points : ( x 1 , y 1 ) = ( c o s 3 ( 2 Π 3 ) , s i n 3 ( 2 Π 3 ) ) = ( 1 8 , 3 3 8 ) ( x_{1},y_{1})=(cos^3(\frac{2\Pi }{3}),sin^3(\frac{2\Pi }{3}))=(\frac{-1}{8},\frac{3\sqrt3}{8}) and : ( x 2 , y 2 ) = ( c o s 3 ( 0 ) , s i n 3 ( 0 ) ) = ( 1 , 0 ) (x_{2},y_{2})=(cos^3(0),sin^3(0))=(1,0) therefore, a = y 2 y 1 x 2 x 1 = 3 3 8 0 1 8 1 = 3 3 a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\frac{3\sqrt3}{8}-0}{\frac{-1}{8}-1}=\frac{-\sqrt3}{3} Now , the gradient of the tangent at the point Θ = ( 2 / 3 ) Π \Theta =(2/3)\Pi is : a t a n g e n t = 1 a n o r m a l = 1 3 3 = 3 a_{tangent}=\frac{-1}{a_{normal}}=\frac{-1}{\frac{-\sqrt3}{3}}=\sqrt3 Now we have that y = a x + b y=ax+b which is : s i n 3 ( Θ ) = 3 c o s 3 ( Θ ) + b sin^3(\Theta )=\sqrt3 cos^3(\Theta )+b therefore , b = s i n 3 ( Θ ) c o s 3 ( Θ ) b=sin^3(\Theta )-\sqrt cos^3(\Theta ) now putting Θ = 2 Π 3 \Theta =\frac{2\Pi }{3} gives : b = s i n 3 ( 2 Π 3 ) 3 c o s 3 ( 2 Π 3 ) = 3 2 b=sin^3(\frac{2\Pi }{3})-\sqrt3 cos^3(\frac{2\Pi }{3})=\frac{\sqrt3}{2} a b = 3 3 2 = 3 2 = 1.5 a*b=\sqrt3*\frac{\sqrt3}{2}=\frac{3}{2}=1.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...