Calculus problem #2198

Calculus Level 3

For a function f ( x ) = a x ln x + b f(x)=ax \ln x + b , we know that f ( e ) = 4 f'(e)=4 and 1 e f ( x ) d x = 1 2 e ( e + 1 ) \displaystyle \int_{1}^{e} f(x)\ dx = \frac{1}{2}e(e+1) . What is the value of a + b a + b ?


The answer is 2.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ricky Escobar
Dec 16, 2013

Differentiating f ( x ) f(x) , we get f ( x ) = a ln x + a . f'(x)=a\ln{x}+a. f ( e ) = a + a = 2 a = 4 , f'(e)=a+a=2a=4, so a = 2 a=2 . Evaluating the integral, we have 1 e ( 2 x ln x + b ) d x \int_{1}^{e} \left(2x\ln{x}+b \right) \, dx = 2 1 e x ln x d x + b 1 e d x . =2\int_{1}^{e} x\ln{x} \, dx + b\int_1^e dx. Using integration by parts with u = ln x d u = 1 x d x u = \ln x \Rightarrow du = \frac{1}{x} \, dx d v = x d x v = x 2 2 dv = x \, dx \Rightarrow v=\frac{x^2}{2} and evaluating the right-hand integral, we get 2 ( [ x 2 2 ln x ] 1 e 1 2 1 e x d x ) + b ( e 1 ) 2\left(\left[\frac{x^2}{2}\ln x \right]_1^e - \frac{1}{2}\int_1^e x \, dx \right) + b(e-1) = e 2 1 2 [ x 2 ] 1 e + b ( e 1 ) =e^2-\frac{1}{2} \left[x^2 \right]_1^e + b(e-1) = e 2 2 1 2 + b ( e 1 ) . =\frac{e^2}{2} - \frac{1}{2} +b(e-1). We know this integral is equal to 1 2 e ( e + 1 ) = e 2 2 + e 2 \frac{1}{2}e(e+1)=\frac{e^2}{2}+\frac{e}{2} , so e 2 2 1 2 + b ( e 1 ) = e 2 2 + e 2 . \frac{e^2}{2} - \frac{1}{2} +b(e-1)=\frac{e^2}{2}+\frac{e}{2}. Solving for b b yields b = 1 2 , b=\frac{1}{2}, so a + b = 2 + 1 2 = 2.5 . a+b=2+\frac{1}{2}=\fbox{2.5}.

FYI - Use \ [ \ ] instead of $$ $$ to get equations to appear on their own line. I've edited your solution so you can refer to it.

Calvin Lin Staff - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...