Calculus problem #2603

Calculus Level 1

Evaluate lim n n n . \lim_{n \rightarrow \infty} \sqrt[n]{n}.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tunk-Fey Ariawan
Feb 15, 2014

Let x = n n \,x=\sqrt[n]{n} , then ln x = 1 n ln n x = e ln n n . \ln x = \frac{1}{n}\ln n\;\;\;\Rightarrow\;\;\;x=e^{\frac{\ln n}{n}}. By using Maclaurin series of exponential function , rewrite lim n n n = lim n e ln n n = lim n k = 1 ( ln n n ) k k ! = lim n ( 1 + ln n n + O ( n 2 ) ) . \begin{aligned} \lim_{n\to\infty}\sqrt[n]{n}&= \lim_{n\to\infty} e^{\frac{\ln n}{n}}\\ &=\lim_{n\to\infty}\sum_{k=1}^\infty \frac{\left(\frac{\ln n}{n}\right)^k}{k!}\\ &=\lim_{n\to\infty}\left(1+\frac{\ln n}{n} +O(n^2)\right).\\ \end{aligned} It's easy to notice that lim n ln n n = 0 \lim\limits_{n\to\infty} \frac{\ln n}{n}=0 and lim n O ( n 2 ) = 0 \lim\limits_{n\to\infty}O(n^2)=0 by using L'Hôpital's rule . Thus lim n n n = 1 \lim_{n\to\infty}\sqrt[n]{n}= \boxed{1} # Q . E . D . # \text{\# }\mathbb{Q}.\mathbb{E}.\mathbb{D}.\text{\#}

Sharky Kesa
Dec 27, 2013

Since n n = n 1 n \sqrt[n]{n} = n^{\frac {1}{n}} , you just need to replace n n with \infty to get an equation 1 \infty^{\frac {1}{\infty}} . 1 \frac {1}{\infty} equals to 0 0 and any number raised to the power to zero is equal to 1 so the answer is 1.

nice!

Duy BK - 7 years, 4 months ago

This is the WRONG APPROACH because infinity to the power of 0 is indeterminate, not 1. You need to use limits to get the answer 1.

Oon Han - 2 years, 5 months ago
Tommy Räjert
Dec 28, 2013

[; \sqrt[n]{n}=n^{1/n} ;] [; n=\infty ;] [; \infty^{1/\infty=0} ;] [; anything^0=1 ;]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...