Trigonometric Derivative

Calculus Level 1

If f ( x ) = 1 + sin x cos x f(x)=\frac{1+\sin x}{\cos x} , what is f ( π 6 ) f'(\frac{\pi}{6}) ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Vincent Paulo Ty
Dec 14, 2013

f ( x ) = 1 cos x + sin x cos x f(x) = \frac{1}{\cos x} + \frac{\sin x}{\cos x}

f ( x ) = sec x + tan x f(x) = \sec x + \tan x

f ( x ) = sec x tan x + sec 2 x f'(x) = \sec x \tan x + \sec^{2} x

f ( x ) = sec x ( tan x + sec x ) f'(x) = \sec x(\tan x + \sec x)

f ( π 6 ) = sec π 6 ( tan π 6 + sec π 6 ) f'(\frac{\pi}{6}) = \sec \frac{\pi}{6}(\tan \frac{\pi}{6} +\sec \frac{\pi}{6})

f ( π 6 ) = 2 3 3 ( 3 3 + 2 3 3 ) f'(\frac{\pi}{6}) = \frac{2 \sqrt{3}}{3} (\frac{\sqrt{3}}{3} + \frac{2 \sqrt{3}}{3})

= 2 = \boxed{2}

In the third step how is f'(x) = sec x tan x + sec^2x?

toshali mohapatra - 7 years, 4 months ago

Log in to reply

When differentiating, there are certain rules and formulas associated with differentiation of each type of function. For sec x \sec x , on differentiating it gives sec x tan x \sec x \tan x and on differentiating tan x \tan x , it gives sec 2 x \sec^2 x . Also, on differentiating a sum of functions like p ( x ) + g ( x ) p(x)+g(x) , differential operator splits on both parts and differential results are added to get the differential value of the whole function.

Prasun Biswas - 7 years, 3 months ago
Muhammad Awais
Mar 8, 2014

by quotient rule dy/dx=1+sinx(-sinx)-(cosx)(cosx)/cos^2

-sinx+sin^2-cos^2x/cos^2x

_sinx-(1)/cos^2x

_(1+sinx)/cos^2x

1+1/2/3/4=2

Prasun Biswas
Feb 19, 2014

Given function is ----

f ( x ) = 1 + sin x cos x \large f(x)=\frac{1+\sin x}{\cos x}

Differentiating both sides w.r.t 'x' --

f ( x ) = cos x ( 0 + cos x ) ( 1 + sin x ) ( sin x ) cos 2 x \large \implies f'(x)=\frac{\cos x (0+\cos x)-(1+\sin x)(-\sin x)}{\cos^2 x}

f ( x ) = cos 2 x + sin x + sin 2 x cos 2 x \large \implies f'(x)=\frac{\cos^2 x + \sin x + \sin^2 x}{\cos^2 x}

f ( π 6 ) = cos 2 π 6 + sin π 6 + sin 2 π 6 cos 2 π 6 \large \implies f'(\frac{\pi}{6})=\frac{\cos^2 \frac{\pi}{6} + \sin \frac{\pi}{6} + \sin^2 \frac{\pi}{6}}{\cos^2 \frac{\pi}{6}}

f ( π 6 ) = ( 3 2 ) 2 + ( 1 2 ) + ( 1 2 ) 2 ( 3 2 ) 2 \large \implies f'(\frac{\pi}{6})=\frac{(\frac{\sqrt{3}}{2})^2+(\frac{1}{2})+(\frac{1}{2})^2}{(\frac{\sqrt{3}}{2})^2}

f ( π 6 ) = 3 4 + 1 2 + 1 4 3 4 \large \implies f'(\frac{\pi}{6})=\frac{\frac{3}{4}+\frac{1}{2}+\frac{1}{4}}{\frac{3}{4}}

f ( π 6 ) = 3 2 3 4 \large \implies f'(\frac{\pi}{6})=\frac{\frac{3}{2}}{\frac{3}{4}}

f ( π 6 ) = 1 1 2 f ( π 6 ) = 2 \large \implies f'(\frac{\pi}{6})=\frac{1}{\frac{1}{2}} \implies f'(\frac{\pi}{6})=\boxed{2}

Vali N
Feb 17, 2014

f(x)=secx+tanx then f'(x)=secx.tanx+(secx)^2 substitute x=30degrees weget f'(30)=(2/3)+(4/3)=2

Budi Utomo
Dec 25, 2013

F(x) = sec x + tanx --> f'(x) = sec x(sec x + tan x) --> f(30) = 2/3^1/2 x (3^1/2) = 2. Answer : 2E-0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...