Can you integrate this?

Calculus Level 3

What is the value of 0 ln 13 e x ( 5 + e x ) e 2 x + 10 e x + 1 d x ? \int_{0} ^ {\ln 13} \frac{ e^x( 5 + e^x) } { \sqrt{ e^{2x} + 10e^x + 1 } } \, dx ?


The answer is 13.8564064606.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ahaan Rungta
Dec 17, 2013

We use the substitution u = e x d u = e x d x u = e^x \rightarrow \mathrm{d}u = e^x \, \mathrm{d}x . We have

0 ln 13 e x ( 5 + e x ) e 2 x + 10 e x + 1 d x = 0 13 5 + u u 2 + 10 u + 1 d u . \begin{aligned} \displaystyle\int_0^{\ln 13} \dfrac {e^x (5 + e^x)}{\sqrt{e^{2x}+10e^x+1}} \, \mathrm{d}x &= \displaystyle\int_0^{13} \dfrac {5+u}{\sqrt{u^2+10u+1}} \, \mathrm{d}u. \end{aligned}

Now, we use the substitution v = u 2 + 10 u + 1 d v = ( 2 u + 10 ) d u v = u^2 + 10u + 1 \rightarrow \mathrm{d}v = (2u + 10) \, \mathrm{d}u . Our integral is now easy to evaluate: 12 300 1 2 d v v = 12 300 1 2 v 1 2 d v = v 12 300 = 300 12 = 10 3 2 3 = 8 3 13.856 . \begin{aligned} \displaystyle\int_{12}^{300} \dfrac {\frac {1}{2} \, \mathrm{d}v}{\sqrt{v}} &= \displaystyle\int_{12}^{300} \dfrac {1}{2} v^{-\tfrac{1}{2}} \, \mathrm{d}v \\&= \left. \sqrt{v} \right|_{12}^{300} \\&= \sqrt{300} - \sqrt{12} \\&= 10\sqrt{3} - 2\sqrt{3} \\&= \boxed {8\sqrt{3} \approx 13.856}. \end{aligned}

I made almost the same, but with the substitutions u = e x + 5 u=e^{x}+5 and v = u 2 24 v= u^{2}-24

Nicolas Vilches - 7 years, 5 months ago

Log in to reply

That works!

Ahaan Rungta - 7 years, 5 months ago

excuse me, can u tell me the final result u got ?!!

emad yousry - 7 years, 1 month ago

we can also substitute t^2=[e^2x+10e^x+1]

yohenba soibam - 7 years, 4 months ago

Log in to reply

Absolutely! I think you would also need to complete the square on the right-hand side.

Curtis Clement - 5 years, 8 months ago

How did you change the limits of the integration?

Khaled Mohamed - 7 years, 4 months ago

It may be easier to follow what is going on with two substitutions, but one could simply use u = e 2 x + 10 e x + 1 u=\sqrt{e^{2x} + 10e^x +1} , and simplify directly to 2 3 10 3 d x \int_{2\sqrt{3}}^{10\sqrt{3}} \, \mathrm{d}x without any intermediary step.

Mark Lama - 3 years, 8 months ago
Bob Bob
Oct 7, 2017

Note that e 2 x + 10 e x + 1 = e x ( 5 + e x ) + 5 e x + 1 \displaystyle e^{2x} + 10e^x + 1 = e^x(5 + e^x) + 5e^x + 1 . We make the substitution u = 5 + e x \displaystyle u = 5 + e^x . Then d x d u = e x \displaystyle \frac{dx}{du} = e^{-x} and our integral becomes

6 18 u u ( u 5 ) + 5 ( u 5 ) + 1 d u \displaystyle \int_6^{18} \frac{u}{\sqrt{u(u-5) + 5(u-5) + 1}} \ du

= 6 18 u u 2 24 d u \displaystyle = \int_6^{18} \frac{u}{\sqrt{u^2 - 24}} \ du

= [ u 2 24 ] 6 18 = 300 12 = 4 12 \displaystyle = \left[\sqrt{u^2 - 24} \right]_6^{18} = \sqrt{300} - \sqrt{12} = 4 \sqrt{12}

= 8 3 \displaystyle = 8 \sqrt{3} .

I = 0 ln 13 e x ( 5 + e x ) e 2 x + 10 e x + 1 d x Let u = e x d u = e x d x = 1 13 5 + u u 2 + 10 u + 1 d x Let v 2 = u 2 + 10 u + 1 2 v d v = 2 u + 10 d u = 12 300 v v d v = 2 3 10 3 d v = 10 3 2 3 = 8 3 13.856 \begin{aligned} I & = \int_0^{\ln 13} \frac {e^x(5+e^x)}{\sqrt{e^{2x}+10e^x+1}} dx & \small \color{#3D99F6} \text{Let }u = e^x \implies du = e^x \ dx \\ & = \int_1^{13} \frac {5+u}{\sqrt{u^2+10u+1}} dx & \small \color{#3D99F6} \text{Let }v^2 = u^2+10u+1 \implies 2v \ dv = 2u + 10 \ du \\ & = \int_{\sqrt{12}}^{\sqrt{300}} \frac vv \ dv \\ & = \int_{2 \sqrt 3}^{10\sqrt 3} dv \\ & = 10\sqrt 3 - 2\sqrt 3 \\ & = 8 \sqrt 3 \\ & \approx \boxed{13.856} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...