Moving points and constant area

Calculus Level 3

Two points P = ( a , a 2 ) P=(a, a^2) and Q = ( b , b 2 ) Q=(b, b^2) ( a < b ) (a < b) are moving along the parabola y = x 2 y=x^2 . If the area of the region bounded by y = x 2 y=x^2 and the line segment P Q PQ is always 36 36 , what is lim a P Q a \displaystyle \lim_{a \to \infty} \frac{\overline{PQ}}{a} ?


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vitor Terra
Dec 17, 2013

Let A = ( a , 0 ) A = (a,0) and B = ( b , 0 ) B = (b,0) . The area of the region bounded by the parabola and P Q PQ is the difference between the area of the trapezoid A P Q B APQB and the area between the parabola and the x-axis, which is a b x 2 d x \int_a^b x^2 dx . The area of the trapezoid is ( A P + B Q ) A B 2 = ( a 2 + b 2 ) ( b a ) 2 \frac{(\overline{AP} +\overline{BQ})\overline{AB}}{2} = \frac{(a^2 +b^2)(b-a)}{2} . Since the area of that region is always 36 36 :

36 = ( a 2 + b 2 ) ( b a ) 2 a b x 2 d x = ( a 2 + b 2 ) ( b a ) 2 x 3 3 a b = ( a 2 + b 2 ) ( b a ) 2 b 3 a 3 3 36 = \frac{(a^2 +b^2)(b-a)}{2} - \int_a^b x^2 dx = \frac{(a^2 +b^2)(b-a)}{2} - \frac{x^3}{3} \Bigg|_a^b = \frac{(a^2 +b^2)(b-a)}{2} - \frac{b^3-a^3}{3}

We can simplify that expression using the factorization b 3 a 3 = ( b a ) ( a 2 + a b + b 2 ) b^3 - a^3 = (b-a)(a^2+ab+b^2) :

36 = ( a 2 + b 2 ) ( b a ) 2 ( b a ) ( a 2 + a b + b 2 ) 3 = b a 6 ( 3 ( a 2 + b 2 ) 2 ( a 2 + a b + b 2 ) ) 36 = \frac{(a^2 +b^2)(b-a)}{2} - \frac{(b-a)(a^2+ab+b^2)}{3} = \frac{b-a}{6}(3(a^2+b^2) - 2(a^2+ab+b^2))

36 = b a 6 ( a 2 + b 2 2 a b ) = ( b a ) ( a b ) 2 6 = ( b a ) 3 6 36 = \frac{b-a}{6}(a^2+b^2-2ab) = \frac{(b-a)(a-b)^2}{6} = \frac{(b-a)^3}{6}

( b a ) 3 = 216 = 6 3 (b-a)^3 = 216 = 6^3

Since a a and b b are real numbers, it follows that b a = 6 b-a=6

By the Pythagorean theorem, the length of the line segment P Q PQ is:

P Q = ( b 2 a 2 ) 2 + ( b a ) 2 = ( b a ) 2 ( b + a ) 2 + ( b a ) 2 \overline{PQ} = \sqrt{(b^2-a^2)^2 + (b-a)^2} = \sqrt{(b-a)^2(b+a)^2 + (b-a)^2}

P Q = ( b a ) ( b + a ) 2 + 1 = 6 ( 2 a + 6 ) 2 + 1 = 6 4 ( a + 3 ) 2 + 1 \overline{PQ} = (b-a)\sqrt{(b+a)^2 + 1} = 6\sqrt{(2a+6)^2 +1} = 6\sqrt{4(a+3)^2 +1} (using that b a = 6 b-a=6 )

Using the limit of a composite function:

lim a P Q a = 6 4 ( lim a a + 3 a ) 2 + lim a 1 a 2 = 6 4 ( 1 ) 2 + 0 = 12 \lim_{a \to \infty}\frac{\overline{PQ}}{a} = 6\sqrt{4(\lim_{a \to \infty}\frac{a+3}{a})^2 +\lim_{a \to \infty}\frac{1}{a^2}} = 6\sqrt{4(1)^2 +0} = \boxed{12}

bit tedious

Kalyanasundari Ravichandran - 7 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...