Delivery Drone

Calculus Level 2

A delivery drone flying at constant speed 15 m/s 15 \text{ m/s} and constant height 2700 m 2700 \text{ m} toward a destination drops its goods. If the trajectory of the falling goods until it hits the ground can be described by the equation y = 2700 x 2 75 , y=2700-\frac{x^2}{75}, where x x is the horizontal distance it travels and y y is its height above the ground, what is the distance (not horizontal displacement) traveled by the goods until it hits the ground?

Note: You can use a 2 + u 2 d u = u 2 a 2 + u 2 + a 2 2 ln ( u + a 2 + u 2 ) + C . \displaystyle \int \sqrt{a^2+u^2}\,du=\frac{u}{2}\sqrt{a^2+u^2}+\frac{a^2}{2}\ln(u+\sqrt{a^2+u^2})+C.

225 145 + 75 4 ln ( 12 + 145 ) 225\sqrt{145}+\frac{75}{4}\ln(12+\sqrt{145}) 450 37 + 75 2 ln ( 12 + 37 ) 450\sqrt{37}+\frac{75}{2}\ln(12+\sqrt{37}) 450 145 + 75 2 ln ( 12 + 145 ) 450\sqrt{145}+\frac{75}{2}\ln(12+\sqrt{145}) 225 37 + 75 4 ln ( 12 + 37 ) 225\sqrt{37}+\frac{75}{4}\ln(12+\sqrt{37})

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Andrew Ellinor
Nov 17, 2015

In order to determine the distance that this projectile traveled, we'll use the arclength formula, given by S = a b 1 + ( f ( x ) ) 2 d x . S = \displaystyle\int_{a}^{b}\sqrt{1 + \left(f'(x)\right)^2}dx. Here, because the projectile starts out at x = 0 x = 0 and lands at x = 450 x = 450 , our integral will be:

0 450 1 + ( 2 x 75 ) 2 d x = 0 450 1 + 4 x 2 5625 d x = 0 450 2 75 5625 4 + x 2 d x \int_{0}^{450}\sqrt{1 + \left(-\frac{2x}{75}\right)^2}dx = \int_{0}^{450}\sqrt{1 + \frac{4x^2}{5625}}dx = \int_{0}^{450}\frac{2}{75}\sqrt{\frac{5625}{4} +x^2}dx

Using the given integral in the note, this evaluates to:

x 75 5625 4 + x 2 + 5625 8 ln ( x + 5625 4 + x 2 ) 0 450 = 225 145 + 75 4 ln ( 12 + 145 ) . \frac{x}{75}\sqrt{\frac{5625}{4} +x^2} + \frac{5625}{8}\ln \left(x + \sqrt{\frac{5625}{4} +x^2}\right) \bigg|_{0}^{450} = 225\sqrt{145} + \frac{75}{4}\ln(12 + \sqrt{145}).\square

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...