Calculus Problem by LOGA 3

Calculus Level 5

Evaluate lim n ( 0 10 ( x ( 10 x ) ) n d x ) 1 n \lim_{n\to\infty}\left(\int_{0}^{10}\Big(x(10-x)\Big)^{n}dx\right)^{\frac{1}{n}}

Hard Version


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Chatrath
Nov 14, 2020

I = 0 10 x n ( 10 x ) n d x I = \int_{0}^{10} x^n(10-x)^n \ dx

Taking x = 10 z x = 10z transforms the integral to:

I = 1 0 2 n + 1 0 1 z n ( 1 z ) n d z I = 10^{2n+1}\int_{0}^{1} z^n(1-z)^n \ dz I = 1 0 2 n + 1 B ( n + 1 , n + 1 ) I = 10^{2n+1} \Beta(n+1,n+1)

Where B ( x , y ) \Beta(x,y) denotes the Beta function. Knowing that:

B ( x , y ) = Γ ( x ) Γ ( y ) Γ ( x + y ) \Beta(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}

I = 1 0 2 n + 1 ( n ! ) 2 ( 2 n + 1 ) ! \implies I =10^{2n+1} \frac{(n!)^2}{(2n+1)!} Γ ( n + 1 ) = n ! \because \Gamma(n+1) =n!

Where n n is a positive integer.

I 1 / n = ( 1 0 2 n + 1 ( n ! ) 2 ( 2 n + 1 ) ! ) 1 / n I^{1/n} = \left(10^{2n+1} \frac{(n!)^2}{(2n+1)!}\right)^{1/n} I 1 / n = 1 0 2 + 1 / n ( ( n ! ) 2 ( 2 n + 1 ) ! ) 1 / n I^{1/n} = 10^{2+1/n} \left( \frac{(n!)^2}{(2n+1)!}\right)^{1/n} lim n I 1 / n = lim n 1 0 2 + 1 / n ( ( n ! ) 2 ( 2 n + 1 ) ! ) 1 / n \lim_{n \to \infty} I^{1/n} = \lim_{n \to \infty} 10^{2+1/n} \left( \frac{(n!)^2}{(2n+1)!}\right)^{1/n} lim n I 1 / n = 100 lim n ( ( n ! ) 2 ( 2 n + 1 ) ! ) 1 / n \lim_{n \to \infty} I^{1/n} = 100\lim_{n \to \infty}\left( \frac{(n!)^2}{(2n+1)!}\right)^{1/n}

Using the Stirling approximation of the factorial:

n ! 2 π n ( n e ) n n! \approx \sqrt{2 \pi n} \left(\frac{n}{e}\right)^n

Plugging this into the expression above gives:

lim n I 1 / n = 100 lim n ( ( 2 π n ( n e ) n ) 2 2 π ( 2 n + 1 ) ( 2 n + 1 e ) 2 n + 1 ) 1 / n \lim_{n \to \infty} I^{1/n} = 100\lim_{n \to \infty}\left( \frac{\left( \sqrt{2 \pi n} \left(\frac{n}{e}\right)^n \right)^2}{\sqrt{2 \pi (2n+1)} \left(\frac{2n+1}{e}\right)^{2n+1}}\right)^{1/n}

Simplifying the above expression leads to the following trivial limit:

lim n I 1 / n = 100 lim n n 2 ( 2 n + 1 ) 2 \lim_{n \to \infty} I^{1/n} =100\lim_{n \to \infty} \frac{n^2}{(2n+1)^2} lim n I 1 / n = 25 \implies \lim_{n \to \infty} I^{1/n} = 25

Some intermediate steps have been skipped in the solution.

Can you explain me what is bita function pls

D D - 6 months ago

Log in to reply

https://en.wikipedia.org/wiki/Beta_function

Hope this link helps. The Beta function is essentially an integral.

Karan Chatrath - 6 months ago

There's an alternative way to you can do integral first which would be a function of 'n' then using standard method of integration by limits it can be done in an easier way. 😁

raj abhinav - 5 months ago

I guessed the solution. This is the correct solution. It has something to do with beta function. There may be a solution which uses inequalities.

Srikanth Tupurani - 1 week, 5 days ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...