Calculus problem No.3

Calculus Level 3

n = 1 1 ( 2 n ) ! \sum_{n=1}^{\infty} \frac{1}{(2n)!}

Evaluate the sum above. Round your answer to three decimal places.


The answer is 0.5430806348.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 16, 2020

Consider the following Maclaurin series :

e x = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + x 4 4 ! + x 5 5 ! + x 6 6 ! + e 1 = 1 + 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + 1 6 ! + e 1 = 1 1 1 ! + 1 2 ! 1 3 ! + 1 4 ! 1 5 ! + 1 6 ! + e + 1 e = 2 + 2 2 ! + 2 4 ! + 2 6 ! + n = 1 1 ( 2 n ) ! = e + 1 e 2 1 = cosh 1 1 0.543 \begin{aligned} e^x & = 1 + \frac x{1!} + \frac {x^2}{2!} + \frac {x^3}{3!} + \frac {x^4}{4!} + \frac {x^5}{5!} + \frac {x^6}{6!} + \cdots \\ e^1 & = 1 + \frac 1{1!} + \frac 1{2!} + \frac 1{3!} + \frac 1{4!} + \frac 1{5!} + \frac 1{6!} + \cdots \\ e^{-1} & = 1 - \frac 1{1!} + \frac 1{2!} - \frac 1{3!} + \frac 1{4!} - \frac 1{5!} + \frac 1{6!} + \cdots \\ \implies e + \frac 1e & = 2 + \frac 2{2!} + \frac 2{4!} + \frac 2{6!} + \cdots \\ \implies \sum_{n=1}^\infty \frac 1{(2n)!} & = \frac {e+\frac 1e}2 - 1 = \cosh 1 - 1 \approx \boxed{0.543} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...