Calculus Problem No.5

Calculus Level 3

π 6 π 6 x cos x 1 + x 2 + x d x = ? \large \int _{-\frac{\pi }{6}}^{\frac{\pi }{6}}\:\frac{x\cos x}{\sqrt{1+x^2}+x}dx = \ ?

Bonus: Write the closed form of the definite integral.


The answer is -0.087955.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jan 18, 2021

The substitution y = x y = -x tells us that I = 1 6 π 1 6 π x cos x 1 + x 2 + x d x = 1 6 π 1 6 π y cos y 1 + y 2 y d y I \; = \; \int_{-\frac16\pi}^{\frac16\pi} \frac{x \cos x}{\sqrt{1 + x^2} + x}\,dx \; = \; \int_{-\frac16\pi}^{\frac16\pi} \frac{-y \cos y}{\sqrt{1+y^2}-y}\,dy and hence

I = 1 2 ( 1 6 π 1 6 π x cos x 1 + x 2 + x d x 1 6 π 1 6 π x cos x 1 + x 2 x d x ) = 1 2 1 6 π 1 6 π x [ ( 1 + x 2 x ) ( 1 + x 2 + x ) ] cos x 1 + x 2 2 x 2 d x = 1 6 π 1 6 π x 2 cos x d x = [ x 2 sin x + 2 x cos x 2 sin x ] 1 6 π 1 6 π = 2 π 3 π 2 36 \begin{aligned} I & = \; \frac12\left(\int_{-\frac16\pi}^{\frac16\pi} \frac{x \cos x}{\sqrt{1 + x^2} + x}\,dx - \int_{-\frac16\pi}^{\frac16\pi} \frac{x \cos x}{\sqrt{1+x^2}-x}\,dx \right) \\[2ex] & = \; \frac12\int_{\frac16\pi}^{\frac16\pi} \frac{x\big[\big(\sqrt{1+x^2}-x) - \big(\sqrt{1+x^2} + x\big)\big]\cos x}{\sqrt{1+x^2}^2 - x^2}\,dx \\ & = \; -\int_{-\frac16\pi}^{\frac16\pi} x^2 \cos x\,dx \; = \; -\Big[x^2\sin x + 2x \cos x - 2\sin x\Big]_{-\frac16\pi}^{\frac16\pi} \; =\; \boxed{2 - \tfrac{\pi}{\sqrt{3}} - \tfrac{\pi^2}{36}} \end{aligned}

ChengYiin Ong
Jan 18, 2021

I = π 6 π 6 x cos x 1 + x 2 + x d x = π 6 π 6 x cos x ( 1 + x 2 x ) ( 1 + x 2 ) 2 x 2 d x = π 6 π 6 x 1 + x 2 cos x d x π 6 π 6 x 2 cos x d x = 2 0 π 6 x 2 cos x d x I=\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{x\cos x}{\sqrt{1+x^2}+x} \, dx=\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{x \cos x (\sqrt{1+x^2}-x)}{(\sqrt{1+x^2})^2-x^2} \, dx=\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} x\sqrt{1+x^2}\cos x \, dx-\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} x^2 \cos x \, dx =-2\int_{0}^{\frac{\pi}{6}} x^2 \cos x \, dx as the function x 1 + x 2 cos x \displaystyle x\sqrt{1+x^2}\cos x is an odd function and x 2 cos x \displaystyle x^2 \cos x is an even function. Thus, I = 2 0 π 6 x 2 cos x d x = 2 ( x 2 sin x + 2 x cos x 2 sin x ) 0 π 6 = 2 π 3 π 2 36 . I=-2\int_{0}^{\frac{\pi}{6}} x^2 \cos x \, dx=-2\left .\left( x^2 \sin x+2x \cos x-2 \sin x\right)\right|_{0}^{\frac{\pi}{6}}=\boxed{2-\frac{\pi}{\sqrt{3}}-\frac{\pi^2}{36}}.

I think you mean x 1 + x 2 cos x x\sqrt{1+x^2}\cos x , not x 2 1 + x 2 cos x x^2\sqrt{1+x^2}\cos x .

Mark Hennings - 4 months, 3 weeks ago

Log in to reply

yes, my bad, thx

ChengYiin Ong - 4 months, 3 weeks ago

l want more integral question

Liu Yang - 4 months, 3 weeks ago

Log in to reply

You will have, man! It just quite hard for me to think about any intermediate integral problems like this, just my homework.

Anh Khoa Nguyễn Ngọc - 4 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...