∫ − 6 π 6 π 1 + x 2 + x x cos x d x = ?
Bonus: Write the closed form of the definite integral.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = ∫ − 6 π 6 π 1 + x 2 + x x cos x d x = ∫ − 6 π 6 π ( 1 + x 2 ) 2 − x 2 x cos x ( 1 + x 2 − x ) d x = ∫ − 6 π 6 π x 1 + x 2 cos x d x − ∫ − 6 π 6 π x 2 cos x d x = − 2 ∫ 0 6 π x 2 cos x d x as the function x 1 + x 2 cos x is an odd function and x 2 cos x is an even function. Thus, I = − 2 ∫ 0 6 π x 2 cos x d x = − 2 ( x 2 sin x + 2 x cos x − 2 sin x ) ∣ ∣ 0 6 π = 2 − 3 π − 3 6 π 2 .
I think you mean x 1 + x 2 cos x , not x 2 1 + x 2 cos x .
l want more integral question
Log in to reply
You will have, man! It just quite hard for me to think about any intermediate integral problems like this, just my homework.
Problem Loading...
Note Loading...
Set Loading...
The substitution y = − x tells us that I = ∫ − 6 1 π 6 1 π 1 + x 2 + x x cos x d x = ∫ − 6 1 π 6 1 π 1 + y 2 − y − y cos y d y and hence
I = 2 1 ( ∫ − 6 1 π 6 1 π 1 + x 2 + x x cos x d x − ∫ − 6 1 π 6 1 π 1 + x 2 − x x cos x d x ) = 2 1 ∫ 6 1 π 6 1 π 1 + x 2 2 − x 2 x [ ( 1 + x 2 − x ) − ( 1 + x 2 + x ) ] cos x d x = − ∫ − 6 1 π 6 1 π x 2 cos x d x = − [ x 2 sin x + 2 x cos x − 2 sin x ] − 6 1 π 6 1 π = 2 − 3 π − 3 6 π 2