Calculus. Thats it.

Calculus Level 4

0 π 2 sin θ + 3 cos θ 3 13 cos θ 5 d θ = a π b c d log ( e f ) \large\int _0^\pi \frac {2\sin \theta + 3\cos \theta - 3}{ 13\cos \theta - 5} d\theta = \frac {a\pi}b - \frac cd \log \left(\frac ef\right) .

If the equation above holds true for positive integers a a , b b , c c , d d , e e , and f f , where a a , b b , d d , e e , and f f are primes (not necessary distinct), find a + b + c + d + e + f a + b + c + d + e + f .


The answer is 38.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I = 0 π 2 sin θ + 3 cos θ 3 13 cos θ 5 d θ = 2 0 π sin θ 13 cos θ 5 d θ + 3 0 π cos θ 13 cos θ 5 d θ 3 0 π 1 13 cos θ 5 d θ Let x = 13 cos θ 5 d x = 13 sin θ d θ = 2 13 8 18 1 x d x + 3 13 0 π 13 cos θ 5 + 5 13 cos θ 5 d θ 3 0 π 1 13 cos θ 5 d θ = 2 13 log x 8 18 + 3 13 0 π d θ 24 13 0 π 1 13 cos θ 5 d θ Let t = tan θ 2 d t = 1 2 sec 2 θ 2 d θ = 2 13 log 9 4 + 3 13 θ 0 π 24 13 0 1 4 9 t 2 d t cos θ = 1 t 2 1 + t 2 = 4 13 log 3 2 + 3 13 π 6 13 0 ( 1 2 3 t + 1 2 + 3 t ) d t = 3 13 π 4 13 log 3 2 6 13 [ log 2 3 t 3 + log 2 + 3 t 3 ] 0 = 3 13 π 4 13 log 3 2 + 2 13 [ log 2 3 t log 2 + 3 t ] 0 = 3 13 π 4 13 log 3 2 + 0 \begin{aligned} I & = \int_0^\pi \frac {2\sin \theta + 3\cos \theta - 3}{13\cos \theta -5} d\theta \\ & = {\color{#3D99F6}2 \int_0^\pi \frac {\sin \theta}{13\cos \theta -5} d\theta}+ 3 \int_0^\pi \frac {\cos \theta}{13\cos \theta -5} d\theta - 3\int_0^\pi \frac 1{13\cos \theta -5} d\theta & \small \color{#3D99F6} \text{Let }x = 13\cos \theta - 5 \implies dx = -13 \sin \theta \ d\theta \\ & = {\color{#3D99F6} - \frac 2{13} \int_8^{-18} \frac 1x dx}+ \frac 3{13} \int_0^\pi \frac {13 \cos \theta - 5 + 5}{13\cos \theta -5} d\theta - 3 \int_0^\pi \frac 1{13\cos \theta -5} d\theta \\ & = - \frac 2{13} \log |x| \bigg|_8^{-18}+ \frac 3{13} \int_0^\pi d\theta - \color{#3D99F6} \frac {24}{13} \int_0^\pi \frac 1{13\cos \theta -5} d\theta & \small \color{#3D99F6} \text{Let }t = \tan \frac \theta 2 \implies dt = \frac 12 \sec^2 \frac \theta 2 \ d\theta \\ & = - \frac 2{13} \log \frac 94 + \frac 3{13} \theta \bigg|_0^\pi - \color{#3D99F6} \frac {24}{13} \int_0^\infty \frac 1{4-9t^2} dt & \small \color{#3D99F6} \implies \cos \theta = \frac {1-t^2}{1+t^2} \\ & = - \frac 4{13} \log \frac 32 + \frac 3{13}\pi - \frac 6{13} \int_0^\infty \left(\frac 1{2-3t} + \frac 1{2+3t} \right)dt \\ & = \frac 3{13}\pi - \frac 4{13} \log \frac 32 - \frac 6{13} \left[-\frac {\log |2-3t|}3 + \frac {\log|2+3t|}3 \right]_0^\infty \\ & = \frac 3{13}\pi - \frac 4{13} \log \frac 32 + \frac 2{13} \left[\frac {\log |2-3t|}{\log|2+3t|} \right]_0^\infty \\ & = \frac 3{13}\pi - \frac 4{13} \log \frac 32 + 0 \end{aligned}

a + b + c + d + e + f = 3 + 13 + 4 + 13 + 3 + 2 = 38 \implies a+b+c+d+e+f = 3+13+4+13+3+2 = \boxed{38} .

@Priyanshu Mishra , you have to mention that a a , b b , c c , d d , e e and f f are positive integers. Because a b = 3 13 = 1.5 6.5 = 0.3 1.3 = . . . \dfrac ab = \dfrac 3{13} = \dfrac {1.5}{6.5} = \dfrac {0.3}{1.3} = ... , there are infinite solutions.. Most of the times for ratio, you have to mention they are coprime integers bacause 3 13 = 6 26 = 9 39 = . . . \dfrac 3{13} = \dfrac 6{26} = \dfrac 9{39} = ... , again infinite solution.

Chew-Seong Cheong - 3 years, 5 months ago

Log in to reply

OK THANKS sir for altercation..

Priyanshu Mishra - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...