Calculus to Combinatorics

Calculus Level 4

1 π 0 π / 2 ( sin 2 θ cos θ ) 2016 d θ \large \displaystyle \dfrac{1}{\pi}\int_0^{{\pi} / {2}}\left (\dfrac {\sin 2 \theta}{\cos \theta}\right)^{2016} \, d\theta

If the value of the integral above is equal to ( 2 n + 1 n ) \dbinom {2n+1}{n} , find the value of 2 n + 2 2n+2 .


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 13, 2016

1 π 0 π 2 ( sin ( 2 θ ) cos θ ) 2016 d θ = 1 π 0 π 2 2 2016 sin 2016 θ d θ = 2 2015 π 0 π 2 2 sin 2016 θ cos 0 θ d θ = 2 2015 π B ( 1008 1 2 , 1 2 ) B ( p , q ) is Beta function = 2 2015 Γ ( 1008 1 2 ) Γ ( 1 2 ) π Γ ( 1009 ) Γ ( n ) is Gamma function = 2 2015 2016 ! π ˙ π 2 2016 1008 ! ˙ 1008 ! π = 2015 ! 1007 ! 1008 ! = ( 2015 1007 ) \begin{aligned} \frac{1}{\pi} \int_0^\frac{\pi}{2} \left(\frac{\sin (2 \theta)}{\cos \theta}\right)^{2016} d\theta & = \frac{1}{\pi} \int_0^\frac{\pi}{2} 2^{2016} \sin ^{2016} \theta \space d\theta \\ & = \frac{2^{2015}}{\pi} \int_0^\frac{\pi}{2} 2 \sin ^{2016} \theta \cos ^{0} \theta \space d\theta \\ & = \frac{2^{2015}}{\pi} B \left(1008\frac{1}{2}, \frac{1}{2} \right) \quad \quad \small \color{#3D99F6}{B (p,q) \text{ is Beta function}} \\ & = \frac{2^{2015} \Gamma \left(1008\frac{1}{2} \right) \Gamma \left(\frac{1}{2} \right)}{\pi \Gamma(1009)}\quad \quad \small \color{#3D99F6}{\Gamma (n) \text{ is Gamma function}} \\ & = \frac{2^{2015} 2016! \sqrt{\pi} \dot{} \sqrt{\pi}}{2^{2016} 1008! \dot{} 1008! \pi} \\ & = \frac{2015!}{1007! 1008!} \\ & = \begin{pmatrix} 2015 \\ 1007 \end{pmatrix} \end{aligned}

2 n + 2 = 2 × 1007 + 2 = 2016 \Rightarrow 2n+2 = 2\times 1007 + 2 = \boxed{2016}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...