The lines of the tangents of and at their negative intersecting point form a triangle of area with the -axis. Find the value of integer .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
f ( x ) can be rewritten as follows
∣ x 3 ∣ x = x 2 ∣ x ∣ x = x ∣ x ∣ 1 = x x 2 1
(Using the quotient rule)
f ′ ( x ) = x 4 ( x x 2 × 0 ) − ( d x d ( x x 2 ) )
= − x 4 x 2 + x ( 2 1 ( x 2 ) − 2 1 ( 2 x ) )
= − x 4 x 2 + x 2 x 2
= − x 4 x 2 2 x 2
= − x 4 ∣ x ∣ 2 x 2
= − x 2 ∣ x ∣ 2
Finding the negative intersection point of f ( x ) and g ( x )
x ∣ x ∣ 1 = − x 2 ∣ x ∣ 2 + 1
x ∣ x ∣ 1 = x 2 ∣ x ∣ x 2 ∣ x ∣ − 2
x 2 ∣ x ∣ = x 5 − 2 x ∣ x ∣
x 4 − x ∣ x ∣ − 2 ∣ x ∣ = 0
x 4 − ∣ x ∣ ( x + 2 ) = 0
x = − 1 (By inspection)
f ( − 1 ) = − 1 so f ( x ) and g ( x ) intersect at ( − 1 , − 1 )
Finding the equation of the tangents
f ′ ( − 1 ) = − 2 (using the previous result for f ′ ( x ) )
y = − 2 x + c
using point ( − 1 , − 1 ) , c = − 3 ⇒ y = − 2 x − 3
g ′ ( − 1 ) = d x d [ x 2 ∣ x ∣ − 2 + 1 ] x = − 1 = d x d [ x 2 x 2 − 2 ] x = − 1
(Using the quotient rule)
x 6 ( x 2 x 2 × 0 ) − ( − 2 × d x d ( x 2 x 2 ) )
= x 6 2 ( 2 x x 2 + x 2 ( 2 1 ( x 2 ) − 2 1 ( 2 x ) ) )
= x 6 2 ( 2 x x 2 + x 2 x 3 )
= x 6 2 ( x 2 3 x 3 )
= x 6 ∣ x ∣ 6 x 3
= x 3 ∣ x ∣ 6
[ x 3 ∣ x ∣ 6 ] x = − 1 = − 6
y = − 6 x + c
using point ( − 1 , − 1 ) , c = − 7 ⇒ y = − 6 x − 7
Finding A
A = ∫ − 1 0 ( − 2 x − 3 ) − ( − 6 x − 7 ) d x
A = ∫ − 1 0 4 x + 4 d x
[ 2 x 2 + 4 x ] − 1 0 = − ( 2 − 4 ) = 2