A calculus problem by Refaat M. Sayed

Calculus Level 5

I = 0 x 1 + 3 x + x 2 d x = π sin ( A 2 ) sin ( A ) sin ( 3 A ) I=\int \limits^{\infty }_{0}\frac{\sqrt{x} }{1+\sqrt{3} x+x^{2}} dx=\frac{\pi \sin \left( \frac{A^\circ}{2} \right) }{\sin \left( A^\circ \right) \sin \left( 3A^\circ \right) }

The equation above holds true for some positive integer A A . Find the smallest possible value of A A .

Clarification: Angles are measured in degrees.


This problem is part of the set of complex analysis problems .


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Nov 30, 2016

I = 0 x x 2 + 3 x + 1 d x \large I = \int_0^{\infty} \frac{\sqrt{x}}{x^2 + \sqrt{3}x + 1} dx

Make x = u \sqrt{x} = u Then 1 2 x d x = d u \frac{1}{2\sqrt{x}}dx = du or d x = 2 u d u dx = 2udu

I = 2 0 u 2 u 4 + 3 u 2 + 1 d u \large I = 2 \int_0^{\infty} \frac{u^2}{u^4 + \sqrt{3}u^2 + 1} du

I = 2 0 u 2 ( u 2 + 3 + j 2 ) ( u 2 + 3 j 2 ) d u \large I = 2 \int_0^{\infty} \frac{u^2}{(u^2 + \frac{\sqrt{3} + j}{2})\cdot (u^2 + \frac{\sqrt{3} - j}{2})} du

Being j j the imaginary unit.

I = 2 0 u 2 ( j u 2 + e j π / 6 j u 2 + e j π / 6 ) d u \large I = 2 \int_0^{\infty} u^2 \Big( \frac{j}{u^2 + e^{j\pi/6}} - \frac{j}{u^2 + e^{-j\pi/6}} \Big) du

I = 2 j 0 ( u 2 u 2 + e j π / 6 u 2 u 2 + e j π / 6 ) d u \large I = 2j \int_0^{\infty} \Big( \frac{u^2}{u^2 + e^{j\pi/6}} - \frac{u^2}{u^2 + e^{-j\pi/6}} \Big) du

I = 2 j [ ( u e j π / 12 a t a n ( u e j π / 12 ) ) 0 ( u e j π / 12 a t a n ( u e j π / 12 ) ) 0 ] \large I = 2j \Big[ \Big(u - e^{j\pi/12}\cdot atan(u\cdot e^{-j\pi/12}) \Big) \Big|_0^{\infty} - \Big(u - e^{-j\pi/12}\cdot atan(u\cdot e^{j\pi/12}) \Big) \Big|_0^{\infty} \Big]

I = 2 j ( e j π / 12 π 2 e j π / 12 π 2 ) \large I = 2j \cdot (e^{-j\pi/12} \cdot \frac{\pi}{2} - e^{j\pi/12} \cdot \frac{\pi}{2})

I = 2 π s i n ( π 12 ) \large I = 2 \pi sin(\frac{\pi}{12})

I = π s i n ( π 12 ) 1 2 1 \large I = \frac{\pi sin(\frac{\pi}{12})}{\frac{1}{2} \cdot 1}

I = π s i n ( π / 6 2 ) sin ( π / 6 ) s i n ( 3 π / 6 ) \large I = \frac{\pi sin(\frac{\pi/6}{2})}{\sin(\pi/6) \cdot sin (3 \cdot \pi/6)}

Hence A = π / 6 A = \pi /6 or, in degrees, A = 3 0 o A = 30^o

The powers of 30 30 divided by 7 7 generate a remainder in the pattern { 2 , 4 , 1 , 2 , 4 , 1... } \{2, 4, 1, 2, 4, 1...\} , i.e., 2 2 if the power is a multiple of 3 3 plus 1 1 , 4 4 if the power is a multiple of 3 3 plus 2 2 and 1 1 if the power is a multiple of 3 3 .

Since 30 30 is a multiple of 3 3 , the remainder is 1 \color{#3D99F6} \fbox{1}

By the way, nice problem, Mr @Refaat M. Sayed !

Guilherme Niedu - 4 years, 6 months ago

Log in to reply

Thank you so much :)

Refaat M. Sayed - 4 years, 6 months ago

Please put π \pi in the last two lines of the integral's solution to make it perfect

Refaat M. Sayed - 4 years, 6 months ago

Log in to reply

Done! My bad

Guilherme Niedu - 4 years, 6 months ago

Relevant wiki: Cauchy Integral Formula

Consider the complex form of I = 0 f ( x ) d x = 0 x x 2 + 3 x + 1 d x \displaystyle I = \int_0^\infty f(x) \ dx = \int_0^\infty \frac {\sqrt x}{x^2+\sqrt 3 x + 1} dx ,

J = C z z 2 + 3 z + 1 d z As z has a branch cut, we use the keyhole contour. = ϵ R f ( z ) d z + Γ f ( z ) d z + R ϵ f ( z ) d z + γ f ( z ) d z Note: lim R Γ f ( z ) d z = 0 , lim ϵ 0 γ f ( z ) d z = 0 = ϵ R z z 2 + 3 z + 1 d z + R ϵ z z 2 + 3 z + 1 d z See note: R ϵ f ( z ) d z = ϵ R f ( z ) d z = 2 0 x x 2 + 3 x + 1 d z \begin{aligned} J & = \int_C \frac {\color{#3D99F6}\sqrt z}{z^2+\sqrt 3 z + 1} dz & \small \color{#3D99F6} \text{As }\sqrt z \text{ has a branch cut, we use the keyhole contour.} \\ & = \int_\epsilon^R f(z) \ dz + {\color{#3D99F6} \int_\Gamma f(z) \ dz} + \int^\epsilon_R f(z) \ dz + {\color{#3D99F6} \int_\gamma f(z) \ dz} & \small \color{#3D99F6} \text{Note: } \lim_{R \to \infty} \int_\Gamma f(z) \ dz = 0, \ \lim_{\epsilon \to 0} \int_\gamma f(z) \ dz = 0 \\ & = \int_\epsilon^R \frac {\sqrt z}{z^2+\sqrt 3 z + 1} \ dz + {\color{#3D99F6} \int^\epsilon_R \frac {\sqrt z}{z^2+\sqrt 3 z + 1} \ dz} & \small \color{#3D99F6} \text{See note: }\int^\epsilon_R f(z) \ dz = \int_\epsilon^R f(z) \ dz \\ & = 2 \int_0^\infty \frac {\sqrt x}{x^2+\sqrt 3 x + 1} \ dz \end{aligned}

J = 2 I \implies J = 2I and then we have:

I = 1 2 C z z 2 + 3 z + 1 d z = 1 2 C z ( z + 3 2 i 2 ) ( z + 3 2 + i 2 ) d z = 1 2 C z ( z e 5 π 6 i ) ( z e 7 π 6 i ) d z Two poles within the contour z = e 5 π 6 i , e 7 π 6 i = 1 2 i C ( z z e 5 π 6 i + z z e 7 π 6 i ) d z By Cauchy integral formula = 2 π i 2 i ( e 5 π 12 i e 7 π 12 i ) = π ( cos 5 π 12 + i sin 5 π 12 cos 7 π 12 i sin 7 π 12 ) = π ( cos 5 π 12 + i sin 5 π 12 + cos 5 π 12 i sin 5 π 12 ) = 2 π cos 5 π 12 = 2 π sin π 12 = 2 π sin 1 5 = π sin 1 5 1 2 × 1 = π sin 1 5 sin 3 0 sin 9 0 \begin{aligned} I & = \frac 12 \int_C \frac {\sqrt z}{z^2+\sqrt 3 z + 1} dz \\ & = \frac 12 \int_C \frac {\sqrt z}{\left(z+\frac {\sqrt 3}2 - \frac i2 \right)\left(z+\frac {\sqrt 3}2 + \frac i2 \right)} dz \\ & = \frac 12 \int_C \frac {\sqrt z}{\left(z - {\color{#3D99F6}e^{\frac {5 \pi}6i}} \right)\left(z - {\color{#3D99F6}e^{\frac {7 \pi}6i}} \right)} dz & \small \color{#3D99F6} \text{Two poles within the contour }z = e^{\frac {5 \pi}6i},\ e^{\frac {7 \pi}6i} \\ & = \frac 1{2i} \int_C \left( \frac {\sqrt z}{z - e^{\frac {5 \pi}6i}} + \frac {\sqrt z}{z - e^{\frac {7 \pi}6i}} \right) dz & \small \color{#3D99F6} \text{By Cauchy integral formula} \\ & = \frac {2\pi i}{2i} \left(e^{\frac {5 \pi}{12}i} - e^{\frac {7 \pi}{12}i} \right) \\ & = \pi \left(\cos \frac {5 \pi}{12} + i \sin \frac {5 \pi}{12} - \cos \frac {7 \pi}{12} - i\sin \frac {7 \pi}{12} \right) \\ & = \pi \left(\cos \frac {5 \pi}{12} + i \sin \frac {5 \pi}{12} + \cos \frac {5 \pi}{12} - i\sin \frac {5 \pi}{12} \right) \\ & = 2 \pi \cos \frac {5 \pi}{12} = 2 \pi \sin \frac \pi{12} = 2 \pi \sin 15^\circ \\ & = \frac {\pi \sin 15^\circ}{\frac 12 \times 1} = \frac {\pi \sin 15^\circ}{\sin 30^\circ \sin 90^\circ} \end{aligned}

A = 30 \implies A = \boxed{30}


Note:

J 1 = R ϵ z z 2 + 3 z + 1 d z = R ϵ e 1 2 ln z z 2 + 3 z + 1 d z = R ϵ e 1 2 ( ln z + i arg z ) z 2 + 3 z + 1 d z Note: arg z = 2 π one revolution = R ϵ e 1 2 ln z e π i z 2 + 3 z + 1 d z = R ϵ e 1 2 ln z z 2 + 3 z + 1 d z = R ϵ z z 2 + 3 z + 1 d z = ϵ R z z 2 + 3 z + 1 d z \begin{aligned} J_1 & = \int^\epsilon_R \frac {\sqrt z}{z^2+\sqrt 3 z + 1} dz \\ & = \int^\epsilon_R \frac {e^{\frac 12 \ln z}}{z^2+\sqrt 3 z + 1} dz \\ & = \int^\epsilon_R \frac {e^{\frac 12 (\ln |z| + i \ {\color{#3D99F6}\arg z})}}{z^2+\sqrt 3 z + 1} dz & \small \color{#3D99F6} \text{Note: } \arg z = 2\pi \text{ one revolution} \\ & = \int^\epsilon_R \frac {e^{\frac 12 \ln |z|} e^{\pi i}}{z^2+\sqrt 3 z + 1} dz \\ & = \int^\epsilon_R \frac {- e^{\frac 12 \ln |z|}}{z^2+\sqrt 3 z + 1} dz \\ & = \int^\epsilon_R \frac {- \sqrt z}{z^2+\sqrt 3 z + 1} dz \\ & = \int_\epsilon^R \frac {\sqrt z}{z^2+\sqrt 3 z + 1} dz \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...