Calculus 2

Calculus Level 4

n = 0 1 ( 2 n + 1 ) 1729 = ( 1 2 a ) ζ ( b ) \large \sum _{n=0}^\infty \dfrac 1{( 2n+1)^{1729}} = (1-2^a) \zeta (b)

The equation above holds true for integers a a and b b , find b a b-a .

Notation : ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 3458.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = n 1 1 ( 2 n + 1 ) 1729 Let n = 1729 = 1 1 n + 1 3 n + 1 5 n + 1 7 n + = 1 1 n + 1 2 n + 1 3 n + 1 4 n + ( 1 2 n + 1 4 n + 1 6 n + 1 8 n + ) = 1 1 n + 1 2 n + 1 3 n + 1 4 n + 1 2 n ( 1 1 n + 1 2 n + 1 3 n + 1 4 n + ) = ( 1 1 2 n ) ( 1 1 n + 1 2 n + 1 3 n + 1 4 n + ) = ( 1 2 n ) ζ ( n ) where ζ ( ) denotes the Riemann zeta function. \begin{aligned} S & = \sum_{n-1}^\infty \frac 1{(2n+1)^{1729}} & \small \color{#3D99F6} \text{Let }n = 1729 \\ & = \frac 1{1^n} + \frac 1{3^n} + \frac 1{5^n} + \frac 1{7^n} + \cdots \\ & = \frac 1{1^n} + \frac 1{2^n} + \frac 1{3^n} + \frac 1{4^n} + \cdots - \left( \frac 1{2^n} + \frac 1{4^n} + \frac 1{6^n} + \frac 1{8^n} + \cdots \right) \\ & = \frac 1{1^n} + \frac 1{2^n} + \frac 1{3^n} + \frac 1{4^n} + \cdots - \frac 1{2^n}\left( \frac 1{1^n} + \frac 1{2^n} + \frac 1{3^n} + \frac 1{4^n} + \cdots \right) \\ & = \left(1 - \frac 1{2^n}\right) \left( \frac 1{1^n} + \frac 1{2^n} + \frac 1{3^n} + \frac 1{4^n} + \cdots \right) \\ & = \left(1 - 2^{-n} \right) \zeta (n) & \small \color{#3D99F6} \text{where }\zeta (\cdot) \text{denotes the Riemann zeta function.} \end{aligned}

b a = n + n = 3458 \implies b-a = n+n = \boxed{3458}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...