Calculus.6

Calculus Level 5

Compute

cos ( x y x + y ) d x d y \iint \limits_\Re \cos \left( \frac { x-y }{ x+y } \right) dx \ dy

where \Re is bounded by x = 0 ; y = 0 ; x + y = 1 x=0; \ y=0; \ x+y=1 .


The answer is 0.4207354924.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Nov 9, 2016

Changing variables to u = x y u = x-y and v = x + y v = x+y , we have the Jacobian ( u , v ) ( x , y ) = 1 1 1 1 = 2 \frac{\partial(u,v)}{\partial(x,y)} \; =\; \left| \begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right| \; = \; 2 and we note that the region R \mathfrak{R} is defined by the inequalities 0 v 1 0 \le v \le 1 , v u v -v \le u \le v . Thus R cos ( x y x + y ) d x d y = 1 2 0 1 d v v v cos ( u v ) d u = 1 2 0 1 d v [ v sin ( u v ) ] u = v v = 1 2 0 1 2 v sin 1 d v = 1 2 sin 1 = 0.4207354924 \begin{array}{rcl} \displaystyle \iint_{\mathfrak{R}} \cos\left(\frac{x-y}{x+y}\right)\,dx\,dy & = & \displaystyle \tfrac12\int_0^1\,dv \int_{-v}^v \cos\left(\frac{u}{v}\right)\,du \; = \; \tfrac12 \int_0^1 \,dv\, \left[ v \sin \left(\frac{u}{v}\right)\right]_{u=-v}^v \\ & = & \displaystyle \tfrac12 \int_0^1 2v\sin 1\,dv \; = \; \tfrac12\sin 1 \; = \; \boxed{0.4207354924} \end{array}

Nice Solution Sir.

Rishabh Deep Singh - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...