Calculust-4

Calculus Level 4

Let h ( x ) = ( f g ) ( x ) + K h(x)= (f \circ g)(x) +K , where K K is any constant.

If d d x h ( x ) = sin x cos 2 ( cos x ) \dfrac{d}{dx} h(x)= \dfrac{-\sin x}{\cos^2{(\cos {x})}} , then compute the value of j ( 0 ) j(0) , where j ( x ) = g ( x ) f ( x ) f ( t ) g ( t ) d t j(x)=\int^{f(x)}_{g(x)} \dfrac{f(t)}{g(t)} \,dt and, f f and g g are trigonometric functions. If j ( 0 ) j(0) is of the form a sec b a-\sec{b} , then give your answer as a + b a+b .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

h ( x ) = s i n x d x c o s 2 ( c o s x ) h(x) = \int \frac{-sinx dx}{cos^2(cosx)}

Put cosx=t \text{Put cosx=t}

h ( x ) = d t c o s 2 t = ( s e c 2 t ) d t = t a n t + K = t a n ( c o s x ) + K h(x) = \int \frac{dt}{cos^2t} = \int (sec^2t) dt= tant+K = tan(cosx) + K

Comparing with the given value of h ( x ) h(x) we get ,

( f g ) ( x ) = t a n ( c o s x ) { f ( x ) = t a n x g ( x ) = c o s x (f\circ g)(x)=tan(cosx)\implies\begin{cases} f(x)=tanx \\ g(x)=cosx\end{cases}

j ( x ) = c o s x t a n x t a n t c o s t d t = c o s x t a n x s e c x t a n x d x = [ s e c x ] c o s x t a n x j(x) = \int_{cosx}^{tanx} \frac{tant}{cost}dt = \int_{cosx}^{tanx} secxtanx dx = [secx]_{cosx}^{tanx}

j ( 0 ) = s e c ( t a n 0 ) s e c ( c o s 0 ) = s e c 0 s e c 1 = 1 a s e c 1 b j(0) = sec(tan0)-sec(cos0)=sec0-sec1=\color{#3D99F6}{\underbrace{1}_{\text{a}}}-sec\color{#D61F06}{\underbrace{1}_{\text{b}}}

a + b = 2 \boxed{a+b=2}

Did the same way! +1!

Rudraksh Shukla - 5 years, 1 month ago

Log in to reply

Great ! I am now loving solving your problems

Aditya Narayan Sharma - 5 years, 1 month ago

Log in to reply

Thank u! Will post more soon!

Rudraksh Shukla - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...