Calculust 5

Calculus Level 4

lim n 1 n 2 k = 0 n 1 ( k k k + 1 ( x k ) ( k + 1 x ) d x ) \large \lim_{n\to\infty} \dfrac{1}{n^2} \sum\limits_{k=0}^{n-1} \left( k \int_{k}^{k+1} \sqrt{(x-k)(k+1-x)} \, dx \right)

The above expression can be represented as π a \dfrac{\pi}{a} , then what is a a ?


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sam Bealing
May 7, 2016

u = x k d u = d x u=x-k \Rightarrow du=dx

k k + 1 ( x k ) ( k + 1 x ) d x = 0 1 u ( 1 u ) d u = 0 1 u u 2 d u = 0 1 1 4 ( 1 2 u ) 2 d u = 1 2 0 1 1 ( 1 2 u ) 2 d u \int_{k}^{k+1} \sqrt{(x-k)(k+1-x)}dx=\int_{0}^{1} \sqrt{u(1-u)}du=\int_{0}^{1} \sqrt{u-u^2} du=\int_{0}^{1} \sqrt{\dfrac{1}{4}-\left (\dfrac{1}{2}-u \right)^2}du=\dfrac{1}{2} \int_{0}^{1} \sqrt{1-(1-2u)^2} du

1 2 u = sin ( θ ) 2 d u = cos ( θ ) d θ d u = 1 2 cos ( θ ) d θ 1-2u=\sin(\theta) \Rightarrow -2du=\cos(\theta) d \theta \Rightarrow du=-\dfrac{1}{2}\cos(\theta)d \theta

= 1 2 π 2 3 π 2 1 sin 2 ( θ ) ( 1 2 cos ( θ ) ) d θ = 1 4 π 2 3 π 2 cos 2 ( θ ) d θ = 1 4 [ sin ( 2 θ ) + 2 x 4 ] π 2 3 π 2 = π 8 \cdots=\dfrac{1}{2} \int_{\dfrac{\pi} {2}}^{\dfrac{3 \pi}{2}} \sqrt{1-\sin^2(\theta)} \left (-\dfrac{1}{2}\cos(\theta)\right )d \theta=-\dfrac{1}{4} \int_{\dfrac{\pi} {2}}^{\dfrac{3 \pi}{2}} \cos^2(\theta) d\theta=-\dfrac{1}{4} \left[ \dfrac{\sin(2 \theta)+2x}{4} \right ]_{\dfrac{\pi} {2}}^{\dfrac{3 \pi} {2}}=-\dfrac{\pi}{8}

As clearly the integral is positive by definition of the square root we can take it to be equal to π 8 \dfrac{\pi} {8}

k = 0 n 1 k × π 8 = π 8 k = 0 n 1 k = π 8 × n ( n 1 ) 2 = π n ( n 1 ) 16 \sum_{k=0}^{n-1} k \times \dfrac{\pi}{8}=\dfrac{\pi}{8}\sum_{k=0}^{n-1} k=\dfrac{\pi}{8} \times \dfrac{n(n-1)}{2}=\dfrac{\pi n (n-1)}{16}

lim n ( π n ( n 1 ) 16 ) n 2 = lim n π ( n 1 ) 16 n = lim n π ( 1 1 n ) 16 = π 16 \lim_{n \rightarrow \infty} \dfrac{\left ( \dfrac{\pi n (n-1)}{16}\right )}{n^2}=\lim_{n \rightarrow \infty} \dfrac{\pi (n-1)}{16n}=\lim_{n \rightarrow \infty} \dfrac{\pi \left (1-\dfrac{1}{n} \right)}{16}=\dfrac{\pi}{16}

a = 16 \boxed{\boxed{a=16}}

Moderator note:

Good clear explanation.

Shashwat Avasthi
Sep 6, 2017

simply substitute x-k=sin^2(t) and the integral reduces to a k-independant expression. Thus it can be taken out of the summation and the limit. The rest is basic math. Don't think this was as good as other level 5 problems.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...