Calculust 7

Calculus Level 4

1 1 + 5 2 x 2 + 1 x 4 x 2 + 1 ln ( 1 + x 1 x ) d x \large \int_{1}^{\frac{1+\sqrt{5}}{2}} \dfrac{x^2+1}{x^4-x^2+1} \ln\left( 1+x-\dfrac{1}{x} \right) \, dx

The above expression can be expressed as π a ln ( b ) \dfrac{\pi}{a}\ln(b) , where a a and b b are positive integers, with b b minimized. What is the value of a + b a+b ?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ameya Daigavane
Jul 13, 2016

Notice that d d x ( x 1 x ) = 1 + 1 x 2 \frac{d}{dx} \left(x - \frac{1}{x}\right) = 1 + \frac{1}{x^2} After dividing the numerator and denominator of the integrand by x 2 x^2 , we can rewrite the integral as, 1 1 + 5 2 1 + 1 x 2 x 2 1 + 1 x 2 ln ( 1 + x 1 x ) d x \large \int_{1}^{\frac{1+\sqrt{5}}{2}} \dfrac{1 + \frac{1}{x^2}}{x^2-1+ \frac{1}{x^2}} \ln\left( 1+x-\dfrac{1}{x} \right) \ dx So if t = x 1 x t = x - \frac{1}{x} , d t = ( 1 + 1 x 2 ) d x dt = \left(1 + \frac{1}{x^2}\right) dx t 2 + 1 = x 2 1 + 1 x 2 t^2 + 1 = x^2-1+ \frac{1}{x^2} After computing the new limits, the integral becomes 0 1 ln ( 1 + t ) 1 + t 2 d t \int_{0}^{1} \dfrac{\ln\left( 1 + t \right)}{1 + t^2} dt The 1 + t 2 1 + t^2 should remind you of the trig identity 1 + tan 2 θ = sec 2 θ 1 + \tan^2 \theta = \sec^2 \theta and we also have, d d θ tan θ = sec 2 θ \frac{d}{d\theta} \tan \theta = \sec^2 \theta So we substitute t = tan θ t = \tan \theta and we now have 0 π 4 ln ( 1 + tan θ ) sec 2 θ d θ sec 2 θ = 0 π 4 ln ( 1 + tan θ ) d θ \int_{0}^{\frac{\pi}{4}} \dfrac{\ln(1 + \tan \theta) \sec^2 \theta d\theta}{\sec^2 \theta} = \int_{0}^{\frac{\pi}{4}} \ln(1 + \tan \theta) d\theta We now apply a useful (but simple to prove) property of definite integrals - a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 a b f ( x ) + f ( a + b x ) d x \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx = \frac{1}{2} \int_{a}^{b} f(x) + f(a + b - x) dx And so, we evaluate 1 2 0 π 4 ln ( 1 + tan θ ) + ln ( 1 + tan ( π 4 θ ) ) d θ \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \ln(1 + \tan \theta) + \ln\left(1 + \tan \left(\frac{\pi}{4} - \theta\right)\right)d\theta Now, tan ( π 4 θ ) = 1 tan θ 1 + tan θ \tan \left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan \theta}{1 + \tan \theta} and ln u + ln v = ln u v \ln u + \ln v = \ln uv Using these facts, our integral is, 1 2 0 π 4 ln ( 1 + tan θ + 1 tan θ ) d θ = 1 2 0 π 4 ln 2 d θ \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \ln(1 + \tan \theta + 1 - \tan \theta) d\theta= \frac{1}{2} \large \int_{0}^{\frac{\pi}{4}} \ln 2 \cdot d\theta As the integrand is constant, we can integrate easily and get I = ln 2 2 π 4 = π 8 ln 2 I = \frac{\ln 2}{2} \cdot \frac{\pi}{4} = \frac{\pi}{8} \ln 2 So finally, a + b = 8 + 2 = 10 a + b = 8 + 2 = 10 .

Moderator note:

Good sequence of steps to simplify the problem.

Awesome Problem+Solution! :D

Harsh Shrivastava - 3 years, 11 months ago

Good solution upvoted!!!!But the problem deserves to be a level 5 one...slightly under rated I think...anyways liked the problem too!!!!

rajdeep brahma - 3 years ago
C Anshul
Jun 29, 2018

H i n t s : Hints:

Firstly use t = x 1 x t = x - \frac{1}{x} ,

U will get

0 1 ln ( 1 + t ) 1 + t 2 d t \int_{0}^{1} \dfrac{\ln\left( 1 + t \right)}{1 + t^2} dt

then just take

I ( α ) = 0 1 ln ( 1 + α t ) 1 + t 2 d t I(α)=\int_{0}^{1} \dfrac{\ln\left( 1 + αt \right)}{1 + t^2} dt

By differentiating this expression w.r.t α α we get,

I ( α ) = 0 1 t ( 1 + α t ) ( 1 + t 2 ) d t I'(α)=\int_{0}^{1} \dfrac{t}{(1+αt)(1 + t^2)} dt

Breaking into partial fractions then again integrating w.r.t α α , u will get I = π 4 l n ( 2 ) I I=\frac{π}{4}ln(2)-I

we can easily get
π 8 l n ( 2 ) \frac{π}{8} ln(2) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...