Calisson

Geometry Level 4

A B C D ABCD is a rhombus with an interior angle of 6 0 60^\circ and has side length 4 4 . If the two small circles are congruent, what is the ratio of the radius of the large circle to the radius of a small circle? If this ratio is expressed as a + b c \dfrac{a + \sqrt b}{c} , where a a , b b , and c c are positive integers and c c is square-free, submit a + b + c a+b+c .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the radius of the small circle be r r and the radius of the large circle be R R . For any triangle, the line joining a vertex and the incenter bisects the angle of the vertex. Consider A B E \triangle ABE and its side A B AB ,

r cot E A B 2 + r cot E B A 2 = A B Let E A B = θ r cot θ 2 + r cot 6 0 = 4 and t = tan θ 2 r t + r 3 = 4 t = r 4 r 3 \begin{aligned} r \cot \frac {\angle EAB}2 + r \cot \frac {\angle EBA}2 & = AB & \small \blue{\text{Let }\angle EAB = \theta} \\ r \cot \frac \theta 2 + r \cot 60^\circ & = 4 & \small \blue{\text{and }t = \tan \frac \theta 2} \\ \frac rt + \frac r{\sqrt 3} & = 4 \\ \implies t & = \frac r{4-\frac r{\sqrt 3}} \end{aligned}

Let C D E = ϕ \angle CDE = \phi and u = tan ϕ 2 u = \tan \dfrac \phi 2 . Similarly for C D E \triangle CDE and side C D CD , r u + 3 r = 4 u = r 4 3 r \dfrac ru + \sqrt 3 r = 4 \implies u = \dfrac r{4-\sqrt 3r} .

Now consider B E + E C = B C BE+EC=BC :

r cot 6 0 + r cot 6 0 θ 2 + r cot 12 0 ϕ 2 + r cot 3 0 = 4 r 3 + 3 + t 1 3 t r + 1 + 3 u 3 u r + 3 r = 4 r 3 + 3 r 3 r + r 3 r + 3 r = 4 4 r 3 + 4 r 3 r = 4 r 3 + r 3 r = 1 r 2 3 3 r + 3 = 0 ( 3 r ) 2 3 r = 0 Divide both sides by r 2 ( 3 r 1 ) 2 ( 3 r 1 ) 1 = 0 3 r 1 = φ where φ = 1 + 5 2 denotes the golden ratio. \begin{aligned} r\cot 60^\circ + r \cot \frac {60^\circ - \theta}2 + r \cot \frac {120^\circ - \phi}2 + r\cot 30^\circ & = 4 \\ \frac r{\sqrt 3} + \blue{\frac {\sqrt 3 + t}{1-\sqrt 3t}r + \frac {1+\sqrt 3u}{\sqrt 3-u} r} + \sqrt 3 r & = 4 \\ \frac r{\sqrt 3} + \frac {3r}{\sqrt 3-r} + \frac r{\sqrt 3-r} + \sqrt 3 r & = 4 \\ \frac {4r}{\sqrt 3} + \blue{\frac {4r}{\sqrt 3-r}} & = 4 \\ \frac r{\sqrt 3} + \frac r{\sqrt 3-r} & = 1 \\ r^2 - 3\sqrt 3 r + 3 & = 0 \\ (\sqrt 3 - r)^2 - \sqrt 3r & = 0 & \small \blue{\text{Divide both sides by }r^2} \\ \left(\frac {\sqrt 3}r - 1\right)^2 - \left(\frac {\sqrt 3}r - 1\right) - 1 & = 0 \\ \implies \frac {\sqrt 3}r - 1 & = \varphi & \small \blue{\text{where }\varphi = \frac {1+\sqrt 5}2 \text{ denotes the golden ratio.}} \end{aligned}

Now consider A D E \triangle ADE and side D A DA .

R cot 6 0 θ 2 + R cot 12 0 ϕ 2 = 4 R ( 3 + t 1 3 t + 1 + 3 u 3 u ) = 4 R r ( 3 + t 1 3 t r + 1 + 3 u 3 u r ) = 4 See above R r ( 4 r 3 r ) = 4 R r = 3 r 1 = φ = 1 + 5 2 \begin{aligned} R \cot \frac {60^\circ - \theta}2 + R \cot \frac {120^\circ - \phi}2 & = 4 \\ R \left(\frac {\sqrt 3+t}{1-\sqrt 3t} + \frac {1+\sqrt 3u}{\sqrt 3-u} \right) & = 4 \\ \frac Rr \left(\blue{\frac {\sqrt 3+t}{1-\sqrt 3t} r + \frac {1+\sqrt 3u}{\sqrt 3-u} r} \right) & = 4 & \small \blue{\text{See above}} \\ \frac Rr \left(\blue{\frac {4r}{\sqrt 3-r}} \right) & = 4 \\ \implies \frac Rr & = \frac {\sqrt 3}r - 1 = \varphi = \frac {1+\sqrt 5}2 \end{aligned}

Therefore a + b + c = 1 + 5 + 3 = 8 a+b+c = 1+5+3 = \boxed 8 .

Excellent! Thank you for your work.

Fletcher Mattox - 1 month ago

Log in to reply

You are welcome

Chew-Seong Cheong - 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...